• 제목/요약/키워드: Groundwater Level

검색결과 1,089건 처리시간 0.024초

지하수 채수에 따른 지반침하 사례분석

  • 정하익;구호본
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.168-171
    • /
    • 2001
  • It is a common practice to extract water from the ground for domestic, agricultural or industrial uses or to lower the groundwater level for construction work. An accurate prediction of ground settlement Is sometimes crucial when groundwater is pumped. This case study have shown that drawdown of the groundwater table may cause ground subsidence. Many settlement gauges was installed in the vicinity of a pumped well to measure the surface settlement. The relationships between the level of groundwater drop and surface settlement is investigated In this research.

  • PDF

Changes of soil water content and soybean (Glycine max L.) response to groundwater levels using lysimeter

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.299-299
    • /
    • 2017
  • Due to the climate changes in Korea, the numbers of both torrential rain events and drought periods have increased in frequency. Water management practice against water shortage and flooding is one of the key interesting for field crop cultivation, and groundwater often serves as an important and safe source of water to crops. Therefore, the objective of this study is to evaluate the effect of groundwater table levels on soil water content and soybean development under two different textured soils. The experiment was conducted using lysimeter located in Miryang, Korea. Two types of soils (sandy-loam and silty-loam) were used with three groundwater table levels (0.2, 0.4, 0.6m). Mean soil water content during the soybean growth period was significantly influenced by groundwater table levels. With the continuous groundwater level at 0.2m from the soil surface, soil water content was not statistically changed between vegetative and reproductive stage, but the 0.4 and 0.6m groundwater table level was significantly decreased. Lower chlorophyll content in soybean leaves was found in shallow water table treatment in earlier part of the growing season, but the chlorophyll contents were non-significant among water table treatments. Groundwater table level treatments were significantly influenced on plant available nitrogen content in surface soil. The highest N contents were observed in 0.6m groundwater table level. It is probably due to the nitrogen loss by denitrification as the result of high soil water content. The length and dry weight of primary root was influenced by groundwater level and thus the highest length and dry weight of root were observed in 0.6m water table level. This result showed that soybean root growth did not extend below the groundwater level and increased with the depth of groundwater table level. The results of this study show that the management of groundwater level can influence on soil characteristics, especially on soil water content, and it is an important practice of to reduce yield loss caused by the water stress during the crop growing season.

  • PDF

1Hz 지하수 데이터를 활용한 중·소규모 지진으로 인한 지하수위 반응 (Groundwater Level Responses due to Moderate·Small Magnitude Earthquakes Using 1Hz groundwater Data)

  • 이가현;이재민;박동규;김동훈;정재훈;이수형
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제29권4호
    • /
    • pp.32-43
    • /
    • 2024
  • Recently, numerous earthquakes have caused significant casualties and property damage worldwide, including major events in 2023 (Türkiye, M7.8; Morocco, M6.8) and 2024 (Noto Peninsula, Japan, M7.6; Taiwan, M7.4). In South Korea, the frequency of detectable and noticeable earthquakes has been gradually increasing since the M5.8 Gyeongju Earthquake. Notable recent events include those in Jeju (M4.9), Goesan (M4.1), the East Sea (M4.5), and Gyeongju (M4.0) since 2020. This study, for the first time in South Korea, monitored groundwater levels and temperatures at a 1Hz frequency to observe the responses in groundwater to moderate and small earthquakes primarily occurring within the country. Between April 23, 2023, and May 22, 2023, 17 earthquakes were reported in the East Sea region with magnitudes ranging from M2.0 to M4.5. Analysis of groundwater level responses at the Gangneung observation station revealed fluctuations associated with five of these events. The 1Hz observation data clearly showed groundwater level changes even for small earthquakes, indicating that groundwater is highly sensitive to the frequent small earthquakes recently occurring in South Korea. The analysis confirmed that the maximum amplitude of groundwater level changes due to earthquakes is proportional to the earthquake's magnitude and the distance from the epicenter. These findings highlight the importance of precise 1Hz-level observations in earthquake-groundwater research. This study provides foundational data for earthquake monitoring and prediction and emphasizes the need for ongoing research into monitoring the changes in groundwater parameters (such as aquifer characteristics, quantity/quality, and contaminant migration) induced by various magnitudes of earthquakes that may occur within the country in the future.

제주도 지하수 관리수위 설정에 관한 연구 (A Study on the Determination of Management Groundwater Level on Jeju Island)

  • 김지욱;고기원;원종호;한찬
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권2호
    • /
    • pp.12-19
    • /
    • 2005
  • 제주도는 우리나라 최다우지역에 속하지만 강우량의 편차가 심하여 이에 따른 년간 지히수 함양량과 적정개발량이 큰 차이를 보이고 있다. 이에 제주도에서는 이상 가뭄이 지속시 해수침투, 지하수위 강하 등의 장해를 예방하기 위하여 대표적인 지하수 관측정의 수위를 기준으로 수위 강하에 따른 적절한 조치를 취할 수 있도록 지하수 관리제도를 도입하였다. 본 연구에서는 이상 가뭄이 지속시 지하수 자원의 적절한 관리를 위해 강우량과 지하수위 관측자료의 분석을 통해 지하수위 강하에 따른 단계별 제한 조치를 취할 수 있는 지하수 관리수위를 제시하였다 우선, 제준 도의 30년간 강우자료를 대상으로 99% 신뢰구간의 하한값을 각 유역별 기준 강우량으로 설정하였으며, 기준 강우량 이하의 강우가 3개월 이상 지속된 기간의 지하수위 관측자료를 추출하였다. 이와 같이 추출된 지하수위 관측자료의 99% 신뢰구간의 하한값을 기준 지하수위로 설정하고, 기준 지하수위의 일정비율을 단계별 지하수 관리수위로 제시하였다.

지하수 모델을 이용한 제주도 지하수 유동특성 및 수리전도도 분석 (Analysis of Groundwater Flow Characterstics and Hydraulic Conductivity in Jeju Island Using Groundwater Model)

  • 김민철;양성기
    • 한국환경과학회지
    • /
    • 제28권12호
    • /
    • pp.1157-1169
    • /
    • 2019
  • We used numerical models to reliably analyze the groundwater flow and hydraulic conductivity on Jeju Island. To increase reliability, improvements were made to model application factors such as hydraulic watershed classification, groundwater recharge calculation by precipitation, hydraulic conduction calculation using the pilot point method, and expansion of the observed groundwater level. Analysis of groundwater flow showed that the model-calculated water level was similar to the observed value. However, the Seogwi and West Jeju watersheds showed large differences in groundwater level. These areas need to be analyzed by segmenting the distribution of the hydraulic conductivity. Analyzing the groundwater flow in a sub watershed showed that groundwater flow was similar to values from equipotential lines; therefore, the reliability of the analysis results could be improved. Estimation of hydraulic conductivity distribution according to the results of the groundwater flow simulation for all areas of Jeju Island showed hydraulic conductivity > 100 m/d in the coastal area and 1 - 45 m/d in the upstream area. Notably, hydraulic conductivity was 500 m/d or above in the lowlands of the eastern area, and it was relatively high in some northern and southern areas. Such characteristics were found to be related to distribution of the equipotential lines and type of groundwater occurrence.

Preliminary results of groundwater flow simulation for high level radioactive disposal in Yu-seong area

  • Park kyung-woo;Cho sung-il;Kim chun-soo;Kim kyung-su;Lee kang-keun
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.253-257
    • /
    • 2005
  • This research aims to demonstrate the regional and site scale groundwater flow simulation for the high level radioactive disposal research site in Yu-seong. We used the Modflow by a finite difference method for groundwater flow simulation, and Modpath module in Modflow package for particle tracking simulation. The range of numerical domain for regional groundwater flow model is $16.32km{\times}20.16km$. And, the depth of numerical domain was expanded to 6,000m. The area of numerical domain for the site scale groundwater flow simulation is $1.6km{\times}1.6km$. Since 2005, the underground research tunnel(URT) is being constructed at KAERI(Korea Atomic Energy Research Institute) site. In the site scale groundwater flow model, the groundwater flow around the KAERI site is simulated. And the change of groundwater level with tunnel excavation is also predicted.

  • PDF

지하수위 예측기법을 활용한 지하댐 운영전략 (Operation Strategy of Groundwater Dam Using Estimation Technique of Groundwater Level)

  • 부성안;신상문;최용선;박재현;정교철;박창근
    • 한국관개배수논문집
    • /
    • 제13권2호
    • /
    • pp.236-245
    • /
    • 2006
  • Among a number of methodologies for developing groundwater supply to overcome drought events reported in the research community, an accurate estimation of the groundwater level is an important initial issue to provide an efficient method for operating groundwater. The primary objective of this paper is to develop an advanced prediction model for the groundwater level in the catchment area of the Ssangcheon groundwater dam using precipitation based period dividing algorithm and response surface methodology (RSM). A numerical example clearly shows that the proposed method can effectively forecast groundwater level in terms of correlation coefficient ($R^2$) in the upstream part of the Ssangcheon groundwater dam.

  • PDF

Assessment of the Effect of Sand Dam on Groundwater Level: A Case Study in Chuncheon, South Korea

  • Yifru, Bisrat;Kim, Min-Gyu;Chang, Sun Woo;Lee, Jeongwoo;Chung, Il-Moon
    • 지질공학
    • /
    • 제30권2호
    • /
    • pp.119-129
    • /
    • 2020
  • Sand dam is a successful water harvesting method in mountainous areas with ephemeral rivers. The success is dependent on several factors including material type, hydrogeology, slope, riverbed thickness, groundwater recharge, and streamflow. In this study, the effect of a sand dam on the groundwater level in the Chuncheon area, South Korea was assessed using the MODFLOW model. Using the model, multiple scenarios were tested to understand the groundwater head before and after the construction of the sand dam. The effect of groundwater abstraction before and after sand dam construction and the sand material type were also assessed. The results show, the groundwater level increases substantially after the application of a sand dam. The comparison of model outputs, simulated groundwater head before and after sand dam application with and without pumping well, shows a clear difference in the head. The material type has also an effect on the groundwater head. As the conductivity of the material increases, the head showed a significant rise.

한계 침투량을 고려한 강우와 지하수위의 상관관계를 이용한 주 단위 지하수자원 관리 취약시기 평가 방법 개발 (Development of the assessment method for weekly groundwater resources management vulnerability using the correlation between groundwater level and precipitation considering critical infiltration concept)

  • 이재범;양정석;김일환
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1237-1245
    • /
    • 2018
  • 본 연구에서는 주 단위 지하수자원 관리 취약시기 평가 방법을 개발하였다. 강수의 지하수위에 대한 영향을 고려하기 위하여 한계 침투량을 고려한 강우이동평균 방법을 통해 지하수위와의 상관계수를 산정하였다. 취약 시기 평가 기준을 개발하고 평가 기준에 대한 가중치를 엔트로피 방법을 이용하여 산정하였다. 강수와의 상관계수와 산정된 가중치를 이용한 주 단위 지하수자원 관리 취약시기 평가 방법을 개발하였으며, 개발한 방법을 통하여 소규모 행정구역을 대상으로 취약시기를 평가하였다. 본 연구에서 개발된 방법은 지역적일뿐만 아니라 계절적인 지하수자원의 효율적 관리 대책 수립의 근거가 될 수 있을 것이다.

LSTM을 활용한 관측자료 기반 미호천 유역 미래 월 단위 지하수위 관리 취약 시기 평가 (Evaluation of the future monthly groundwater level vulnerable period using LSTM model based observation data in Mihostream watershed)

  • 이재범;아거쑤아모스;양정석
    • 한국수자원학회논문집
    • /
    • 제55권7호
    • /
    • pp.481-494
    • /
    • 2022
  • 본 연구는 미호천 유역의 월 단위 지하수위 관리 취약 시기 평가와 LSTM을 이용한 미래 지하수위 관리 취약 시기 평가 기법을 제안하였다. 미호천 유역 내의 지하수위 및 강수량 관측소 관측자료를 수집하고, LSTM을 구성한 후 강수량과 지하수위에 대한 2020~2022년 예측 값을 산정하고, 미래 지하수위 관리 취약시기 평가를 수행하였다. 지하수위 관리 취약시기 평가를 위하여 지하수위와 강수량 간의 상관관계를 고려한 가중치와 기후변화로 인한 관측자료의 변동을 고려하기 위한 가중치를 산정한 후, 이를 조합하여 최종 가중치를 산정하였다. 평가 결과 미호천 유역은 2월, 3월, 6월에 지하수위 관리 취약성이 높게 나타났고, 특히 천안수신 관측소 인근은 미래에 지하수위 관리 취약성 지수가 악화 될 것으로 분석되어 추가 관리 방안 도입이 필요할 것으로 나타났다. 본 연구의 결과는 지하수위 관리 취약 시기 평가 및 LSTM을 활용한 미래 예측 기법을 제시함으로써 발생할 수 있는 유역 내 지하수자원 문제에 선제적인 대응방안 도출에 기여할 것으로 기대된다.