• Title/Summary/Keyword: Groundwater Flow

Search Result 1,031, Processing Time 0.025 seconds

Analysis of Flow Duration and Estimation of Increased Groundwater Quantity Due to Groundwater Dam Construction (지하댐 건설로 인한 지하수 증가량 계산 및 유황 분석)

  • Kim, Jong-Tae;Kim, Gyoo-Bum;Chung, Il-Moon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.91-98
    • /
    • 2014
  • This paper aims to calculate the increase in groundwater quantity following groundwater dam construction, and to assess its impact on surface water. In the study area of Osib-cheon, Yeongdeok, we estimated groundwater quantity, groundwater level, and effective porosity, and examined surface water fluctuations with respect to the increased groundwater quantity based on the flow duration. The results reveal that the increased groundwater quantity was at most $91,746m^3$ in the total drainage basin of the groundwater dam, and the reduced groundwater quantity was at most $11,259m^3$ in the lower zone of the groundwater dam. Therefore, the total groundwater resources secured was $80,487m^3$ and the decrease in groundwater quantity was just 12.27% of the amount of increase. There were changes in discharge rate by up to $3.00{\times}10^{-2}m^3/s$, as deduced from an analysis offlow duration as a result of groundwater dam construction. The overall difference between before and after construction of the dam was almost insignificant compared with the previous dam. The present results indicate that dammed groundwater can serve as an alternative water resource with sufficient quantity.

A Study on the Installation Method of PRB by Controlling Groundwater Flow in Hybrid Funnel and Gate (하이브리드 Funnel and Gate 지하수 흐름제어를 통한 반응벽체 설치 연구)

  • Tae Yeong Kim;Jeong Yong Cheon;Myeong Jae Yi;Yong Hoon Cha;Seon Ho Shin;Meong Do Jang;Jeongwoo Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.3
    • /
    • pp.1-11
    • /
    • 2023
  • Permeable reactive barrier (PRB) is a prominent in-situ remedial option for cleanup of contaminated groundwater and has been gaining increasing popularity in recent years. Funnel-and-gate systems, comprised of two side wings of impermeable walls and a central gate wall, are frequently implemented in many sites, but often suffers from bypassing of groundwater due to the progressive clogging of the gate wall over extended period of time. This study investigated technical feasibility of a hybrid funnel-and-gate system designed to address the flow deterioration in the gate wall. The key attribute of the proposed hybrid system is the operation of drainage units at the barrier walls and rear end of the gate wall. A conceptual modeling with MODFLOW indicated the groundwater inside the barrier was maintained at appropriate level to be guided toward the gate wall, yielding constant discharging of groundwater from the gate.

Analysis of interaction between river and groundwaterin Kurobe river fan by a grid-based hydrological model

  • Takeuchi, Masanobu;Murata, Fumito;Katayama, Takeshi;Nakamura, Shigeru;Nakashima, Noriyuki;Yamaguchi, Haruka;Baba, Aki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.26-26
    • /
    • 2012
  • The Kurobe river, which runs through eastern Toyama Prefecture is one of the most famous rivers for wild water because of its steep slope in the range from 1/5 to 1/120. This river forms an alluvial fan in the range up to 13 kilometers from the sea. In this region, significant seepage flow occurs and thus the stream sometimes been intermitted. Moreover, the amount of seepage flow seems to vary with the groundwater level of the region. To keep the river environment healthy for flora and fauna, especially to conserve good condition for spawning of fishes, an appropriate environmental flow should be maintained in the river. To achieve this target, controlling of the upstream reservoir has to be studied in depth. One of the major problems to decide the amount of water to be released from the reservoir to maintain the environmental flow is to estimate the amount of water leaked into the groundwater from the river. This phenomenon is affected by the river flow rate as well as the groundwater level in the alluvial fan and the conditions vary in space and time. Thus, a grid-based hydrological cycle analysis model NK-GHM has been applied to clarify the hydrological cycle componentsin this area including seepage/discharge from/to the river. The model was tested by comparing with river flow rate, groundwater levels and other observations and found that the model described those observations well. Consequently, the seepage from the Kurobe river was found significant but it was also found that the groundwater in this region has been preserved by the recharge from the irrigation water supply into paddy fields in the alluvial fan.

  • PDF

Interaction between Groundwater and Surface Water in Urban Area (도시지역의 지하수와 하천수의 교류량)

  • Bae, Sang-Keun;Lee, Seung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.919-927
    • /
    • 2008
  • Flow exchanges between stream and groundwater are assessed on urban streams in Daegu, Korea. Two rivers and 25 streams with the total length of 240 km run through the study area. The interaction between surface water and groundwater was estimated using Darcy's method. The study was conducted by dividing the basin into 16 smaller watersheds, and for comparison purposes. Groundwater level, surface water level, hydraulic conductivity, thickness of aquifer, and the distance between the well and the nearest stream were used for quantifying the interaction. To investigations the groundwater interaction in the watersheds, the amount of effluent seepage from groundwater to the stream, the amount of influent seepage from the stream to groundwater, and the amount of annual interaction between surface water and groundwater were computed. The total amount of effluent seepage from the groundwater to stream in the basin was approximately $72{\times}10^6m^3/year$. The total amount of influent seepage from the stream to groundwater was approximately $35{\times}10^6m^3/year$. It appeared that the total amount of annual interaction between surface water and groundwater was approximately $108{\times}10^6m^3/year$ and the total groundwater flow balance was approximately $37{\times}10^6m^3/year$. The annual amount of interaction between the surface water and groundwater was the largest in the Goryung Bridge Basin($29{\times}10^6m^3/year$) and the least in the Dalchang Dam Basin($0.2{\times}10^6m^3/year$). The results show that flow exchanges between stream and groundwater are very active and that there are significant difference among the smaller watersheds. Finally, the results indicate that it is necessary to further investigate to more precisely understand the interaction characteristics between surface water and groundwater in urban areas.

Correlation Analysis with Reservoir, River, and Groundwater Level Data Sets in Nakdong River Watershed (낙동강 하류지역의 저수지, 하천 및 지하수위 자료의 상관관계 분석)

  • Yang, Jeong-Seok;Yoo, Ga-Young;Ahn, Tae-Youn;Kim, Jung-Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1151-1154
    • /
    • 2008
  • The water level data sets among hydrologic observation data are correspond to the hydraulic head for each observation point and determine flow direction. The level difference among reservoir, river, and groundwater determines groundwater flow direction, just like water flows in the downstream direction because the water level of upstream point is higher than that of downstream point. We can analyze the relationship among the components in hydrologic cycle by comparing the water level differences. This research dealt with the data from Nakdong river watershed in Gyungsangnam-Do. Three data group are used for the analysis and onr group is composed of reservoir, river, and groundwater data sets. The data sets are closely(within 10 km) located in the interested area.

  • PDF

Three-Dimensional Numerical Simulation of Impacts of Fault Existence on Groundwater Flow and Salt Transport in a Coastal Aquifer, Buan, Korea (한국 부안 지역 해안 대수층 내의 지하수 유동 및 염분 이동에 대한 단층 존재의 영향 삼차원 수치 모의)

  • Park, Ju-Hyun;Kihm, Jung-Hwi;Kim, Han-Tae;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.33-46
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a generalized multidimensional hydrodynamic dispersion numerical model is performed to simulate effectively and to evaluate quantitatively impacts of fault existence on densitydependent groundwater flow and salt transport in coastal aquifer systems. A series of steady-state numerical simulations with calibration is performed first for an actual coastal aquifer system which contains a major fault. A series of steadystate numerical simulations is then performed for a corresponding coastal aquifer system which does not have such a major fault. Finally, the results of both numerical simulations are compared with each other and analyzed. The results of the numerical simulations show that the major fault produces hydrogeologically significant heterogeneity and true anisotropy in the actual coastal aquifer system, and density-dependent groundwater flow, salt transport, and seawater intrusion patterns in the coastal aquifer systems are intensively and extensively dependent upon the existence or absence of such a major fault. Especially, the major fault may act as a pathway for groundwater flow and salt transport along the direction parallel to its plane, while it may also behave as a barrier against groundwater flow and salt transport along the direction perpendicular to its plane.

Groundwater Ages and Flow Paths at a Coastal Waste Repository Site in Korea, Based on Geochemical Characteristics and Numerical Modeling

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Koh, Dong-Chan;Lee, Chung-Mo;Ryu, Sang Min;Lee, Soo-Hyoung
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • Groundwater flow paths and groundwater ages at a radioactive waste repository located in a coastal area of South Korea were evaluated using the hydrochemical and hydrogeological characteristics of groundwater, surface water, rain water, and seawater, as well as by numerical modeling. The average groundwater travel time in the top layer of the model, evaluated by numerical modeling and groundwater age (34 years), approximately corresponds to the groundwater age obtained by chlorofluorocarbon (CFC)-12 analysis (26-34 years). The data suggest that the groundwater in wells in the study area originated up-gradient at distances of 140-230 m. Results of CFC analyses, along with seasonal variations in the δ18O and δD values of groundwater and the relationships between 222Rn concentrations and δ18O values and between 222Rn concentrations and δD values, indicate that groundwater recharge occurs in the summer rainy season and discharge occurs in the winter dry season. Additionally, a linear relationship between dissolved SiO2 concentrations and groundwater ages indicates that natural mineralization is affected by the dilution of groundwater recharge in the rainy summer season.

Discontinuous Fracture Characteristics and Fractal Dimensions of Groundwater Flow Section in Youngchun Waterway Tunnel (영천댐 도수로터널내 지하수 유출구간의 불연속성 단열 특성 및 단열 프랙탈 차원)

  • 이병대;추창오;이인호;정교철;함세영;조병욱
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.333-344
    • /
    • 2002
  • To clarify the relationship between groundwater flow tate and statistical distribution of fractures in Youngchun waterway tunnel, the fracture characteristics and fractal dimensions of groundwater flow section were evaluated. The flow rate of 84,465m$^3$/day was identified in fault, accounting for about 70 percent of the total How rate. The flow rate of 36,525m$^3$/day was identified in joint, accounting for about 30 percent of the total flow rate. The flow late in the NATM section of sedimentary rocks increased with the fractal dimensions. The fractal dimensions determined in fault or fracture zones show more positive relation with the flow rate than those in joint developed zones.

An Analysis on Groundwater Flow Properties in the Gneiss of the Ingulam Valley (잉울암골주변 편마암에서의 지하수유동특성 분석)

  • 김계남;김재한
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.47-60
    • /
    • 1993
  • The evaluation of grounwater flow in the Ingulam valley catchment area in the vicinity of SamKwang mine was studied. In this study, field hydraulic tests, groundwater flow measurement, and MODFLOW model application were carried out. The results of analysis are described as follows. The rainrate infiltrated into the ground in the study area, hardly reached the gneiss region deeper than EL.(+)100m above the surface of seawater. The rainwater infiltrated into the ground near the water system boundary, flowed out into the vicinity of streams and the travel time was between 15 and 263 years. Also, the estimated total flow rate of the groundwater in the study area was 307㎥/day.

  • PDF