• 제목/요약/키워드: Ground-water irrigation

검색결과 103건 처리시간 0.027초

신재생에너지를 이용한 사막화 방지 시스템 실증 (몽골) (Demonstration of system to combat desertification using renewable energy)

  • 김만일;이승훈;황정훈;조운식;박문희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.73-76
    • /
    • 2009
  • Generally, wind or solar power system is operated as a stand-alone power system, the efficiency of which could be higher by designing wind-solar combined system considering average wind speed and solar radiation of the desert region, Mongolia. This system is designed to generate electricity for power users and pumps the ground water for irrigation using deep well pump. The ground water can be used for farming or forestation where there is no or little irrigation system. In connection with this study, a renewable energy park, Green Eco Energy Park, was developed at about 50km east of Ulaanbaatar. 3 sets of 10kW wind power generator and 70 kW of solar power module were installed there. The electricity generated from the system is used to on-site office building and deep well pump for ground water pumping. A 10kW stand-alone solar pumping system, which has no rechargeable battery system, is installed to pump the ground water with the amount of generated power. The ground water is stored in 3 artificial ponds and then it is used for raising nursery tree and farming. The purpose of this study is to provide a possible energy solution to desert regions where there is no or little power system. The system also supply power to ground water pump, and the water can be used for farming and forestation, which will also be a solution of preventing desertification or spreading of desert area.

  • PDF

Optimization of hydraulic section of irrigation canals in cold regions based on a practical model for frost heave

  • Wang, Songhe;Wang, Qinze;An, Peng;Yang, Yugui;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.133-143
    • /
    • 2019
  • An optimal hydraulic section is critical for irrigated water conservancy in seasonal frozen ground due to a large proportion of water leakage, as investigated by in-situ surveys. This is highly correlated with the frost heave of underlain soils in cold season. This paper firstly derived a practical model for frost heave of clayey soils, with temperature dependent thermal indexes incorporating phase change effect. A model test carried out on clay was used to verify the rationality of the model. A novel approach for optimizing the cross-section of irrigation canals in cold regions was suggested with live updated geometry characterized by three unique geometric constraints including slope of canal, ratio of practical flow section to the optimal and lining thickness. Allowable frost heave deformation and tensile stress in canal lining are utilized as standard in computation iterating with geometry updating while the construction cost per unit length is regarded as the eventual target in optimization. A typical section along the Jinghui irrigation canal was selected to be optimized with the above requirements satisfied. Results prove that the optimized hydraulic section exhibits smaller frost heave deformation, lower tensile stress and lower construction cost.

TIME SERIES ANALYSIS OF SPOT NDVI FOR IDENTIFYING IRRIGATION ACTIVITIES AT RICE CULTIVATION AREA IN SUPHANBURI PROVINCE, THAILAND

  • Kamthonkiae Daroonwan;Kiyoshe Honda;Hugh Turral
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.3-6
    • /
    • 2005
  • In this paper, the real scenario of water situation (e.g. water management, water availability and flooding) in an irrigated rice cultivation area in Suphanburi Province, Central-West Thailand is discussed together with the NDVI time series data. The result shown is derived by our classifier named 'Peak Detector Algorithm (PDA)'. The method discriminated 5 classes in terms of irrigation activities and cropping intensities, namely, Non-irrigated, Poorly irrigated - 1 crop/year, Irrigated - 2 crops/year, Irrigated - 3 crops/year and Others (no cultivation happens in a year or other land covers). The overall accuracy of all classified results (1999-2001) is around $77\%$ against independent ground truth data (general activities or function of an area). In the classified results, spatial and temporal inconsistency appeared significantly in the Western and Southern areas of Suphanburi. The inconsistency resulted mainly by anomaly of rainfall pattern in 1999 and their temporal irrigation activity. The algorithm however, was proved that it could detect actual change of irrigation status in a year.

  • PDF

경기 지역 농경지 하부로의 해수 침투에 관한 지구물리 및 지구화학적 연구 (Geophysical and Geochemical Studies for the Saline Water Intrusion under the Paddy Field in Kyoung-gi area, Korea)

  • 이상호;김경웅;이상규
    • 지구물리와물리탐사
    • /
    • 제2권2호
    • /
    • pp.96-103
    • /
    • 1999
  • 현재까지의 해수침투에 관한 대부분의 연구들은 조사방법상, 지구물리적 방법과 지구화학적 방법으로 뚜렷이 구분지어 접근되어왔다. 본 논문에서는 경기도에 위치한 해안 경작지 하부로의 해수침투 문제를 경제적이면서 효율적으로 접근하기 위하여 한 조사 지역에 대하여 두 탐사 방법을 동시에 적용하고자 하였다. 본 연구에서는 슬림버져 배열의 전기비저항 수직탐사, 주파수 영역 전자탐사 그리고 대상 지역 내 지하수에 대한 지화학 분석 등의 탐사방법이 적용되었다. 지구물리적 방법으로 적용된 전기비저항 수직탐사는 관개 경작지에 물이 없을 때 실시하였으며, 전자탐사는 경작지 내 관개수가 유입된 후에 측정하였다. 이러한 동일 조사 지역에서의 시기를 달리한 측정은 지하수량의 변화에 따른 전기 비저항 이상 지역의 분포 변화를 살피기 위하여 실행되었으며 결과적으로 지하수량의 증가로 인해 전기비저항이 낮아진 지역을 동일한 양상을 보이는 해수침투 지역으로부터 구분할 수 있었다. 앞의 지구물리 탐사결과를 뒷받침하기 위하여 대상 지역 내에 23곳의 사용중인 지하수를 채집하여 지구화학적 분석을 실시하였다. 지구화학 분석결과, 앞의 지구물리 탐사결과에서 밝혀진 해수침투 지역과 가장 가까운 곳의 물시료에서 농업용수 기준(250 mg/l)을 초과하는 높은 염도를 나타내었으며 수소와 산소원소를 이용한 동위원소 분석과 통계방법인 주성분 분석을 통하여 내륙 지역에서 나타난 지하수내의 높은 염분은 상부 주택가로부터 유입되었음을 알 수 있었다.

  • PDF

Responses of Rice (Oryza sativa L.) Yield and Percolation Water Qualities to Alternative Irrigation Waters

  • Shin, Joung-Du;Han, Min-Su;Kim, Jin-Ho;Jung, Goo-Bok;Yun, Sun-Gang;Eom, Ki-Cheol;Lee, Myoung-Sun
    • 한국환경농학회지
    • /
    • 제22권3호
    • /
    • pp.192-196
    • /
    • 2003
  • Objective of this study was to investigate the influences of harvest index and percolation water quality as irrigated the discharge waters from an industrial and a municipal wastewater treatment plants and seawater (1:5 seawater: tap water) as alternative water resources during tillering stage for drought stress. There were four different treatments such as the discharge water from an industrial (textile dyeing manufacture plant) wastewater treatment plant (DIWT), discharge water from the municipal wastewater treatment plant (DMWT), seawater (1:5) and groundwater as a control. For the initial chemical compositions of alternative waters, it appeared that higher concentrations of COD, $Mn^{2+}$, and $Ni^+$ in DIWT were observed than reused criteria of other country for irrigation, and concentrations of $EC_i$, Cl, and $SO_4$ in seawater were higher than that for irrigation. Harvest index was not significantly different between DIWT and DMWT with different irrigation periods in two soil types, but that of seawater (1:5) is decreased with irrigation periods in clay loam soil and not different between 10 days and 20 days of irrigation periods in sandy loam soil. For percolation water qualities, values of sodium adsorption ratio (SAR) are increased with prolonging the irrigation periods of seawater (1:5) and DIWT, but those of DMWT were almost constant through the cultivation periods regardless of the irrigation period in both soil types. EG of percolation waters is eventually increased with prolonging days after irrigation regardless of irrigation periods in both soil types. Therefore, it might be concluded that there was potentially safe to irrigate the discharge water from municipal wastewater treatment plant relative to harvest index, SAR and $EC_i$ values of the ground water through the rice cultivation period at tillering stage for drought period.

Simulation of IWR Based on Different Climate Scenarios

  • Junaid, Ahmad Mirza;Arshad, M.;Choi, Kyung-Sook
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.519-519
    • /
    • 2016
  • Upper Chenab Canal (UCC) is a non-perennial canal in Punjab Province of Pakistan which provides irrigation water only in summer season. Winter and summer are two distinct cropping season with an average rainfall of about 161 mm and 700 mm respectively. Wheat-rice is common crop rotation being followed in the UCC command area. During winter season, groundwater and rainfall are the main sources of irrigation while canal and ground water is used to fulfil the crop water requirements (CWR) during summer. The objective of current study is to estimate how the irrigation water requirements (IWR) of the two crops are going to change under different conditions of temperature and rainfall. For this purpose, 12 different climatic scenarios were designed by combining the assumptions of three levels of temperature increase under dry, normal and wet conditions of rainfall. Weather records of 13 years (2000-2012) were obtained from PMD (Pakistan Meteorological Department) and CROPWAT model was used to simulate the IWR of the crops under normal and scenarios based climatic conditions. Both crops showed a maximum increase in CWR for temperature rise of $+2^{\circ}C$ i.e. 8.69% and 6% as compared to average. Maximum increment (4.1% and 17.51% respectively) in IWR for both wheat and rice was recorded when temperature rise of $+2^{\circ}C$ is coupled with dry rainfall conditions. March & April during winter and August & September during summer were the months with maximum irrigation requirements. Analysis also showed that no irrigation is needed for rice crop during May and June because of enough rainfall in this area.

  • PDF

하수의 농업적 재이용에 따른 논 담수 내 미생물 위해성 평가 (Microbial Risk Assessment in Reclaimed Wastewater Irrigation on a Paddy Field)

  • 이한필;윤춘경;정광욱;손장원
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.69-75
    • /
    • 2009
  • Water stress has become a major concern in agriculture. Korea suffers from limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution. A study was performed to examine the effects of microorganism concentration in the ponded-water of a paddy rice field with reclaimed-water irrigation for evaluating the microbial risk to farmers and neighborhood children. Most epidemiological studies were performed based on an upland field, and they may not directly applicable to paddy fields. Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. Their risk value increased significantly high level after irrigation and precipitation. It implies that agricultural activities such as plowing, and fertilizing, and precipitation need be practiced a few days after irrigation considering health risks. The results about field application of the microbial risk assessment using E. coli showed difference according to monitoring time and treatment plot. Result of the microbial risk assessment showed that risk values of ground-water and reclaimed secondary wastewater irrigation were lower than directly use of wastewater treatment plants' effluent. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of E. coli to wastewater reuse in a paddy rice farming.

섬진강 하구 관개용수 염화에 의한 시설재배단지 토양의 염류집적 심화 (Effect of Irrigation Water Salinization on Salt Accumulation of Plastic Film House Soil around Sumjin River Estuary)

  • 이슬비;홍창오;오주환;;김필주
    • 한국환경농학회지
    • /
    • 제27권4호
    • /
    • pp.349-355
    • /
    • 2008
  • 섬진강 하구 시설재배지의 염류집적심화의 원인을 구명하기 위해 경남 하동군 목도리 시설재배단지 토양의 염류집적 특성과 주요 관개용수인 지하수의 수질특성, 그리고 시비실태를 조사하여 다음과 같은 결론을 얻었다. 토양 내 염류농도가 우리나라 시설재배지 평균에 비해 높았으며, 특히 나트륨과 염소의 함량이 높게 검출되어 염에 대해 민감한 작목에 대해서는 유묘기에 염해발생가능성이 있을 것으로 판단되었다. 지역에서 주로 사용되고 있는 천층 지하수는 높은 농도의 염(평균 EC $2.6\;dS\;m^{-1}$)과 나트륨과 염소를 포함하고 있었다. 특히 수막시설 운영으로 관개용수의 사용량이 급격하게 증가하는 동절기 관개용수 중 염 농도는 급격하게 증가되고 있어 이시기 토양 내 염농도의 상승과 작물에 대한 염해유발 가능성을 가지고 있었다. 이외에도 지역에서 재배되고 있는 모든 작목에 대해 추천시비량 이상의 과량의 화학비료와 축산분뇨퇴비가 시용되고 있어 표층토의 염류집적을 가속화시키는 것에 기여하였다. 해당 지역의 염류피해를 경감하기 위해서는 일차적으로 양질의 관개용수의 확보와 시비량 저감을 위한 노력이 필요할 것으로 판단된다.

Application of Subirrigation Using Capillary Wick System to Pot Production

  • Lee, Chi-Won;So, In-Sup;Jeong, Sung-Woo;Huh, Moo-Ryong
    • 농업생명과학연구
    • /
    • 제44권3호
    • /
    • pp.7-14
    • /
    • 2010
  • Alternative subirrigation way, capillary wick system (CWS) was tested to reduce labor cost, waste water, contamination of ground water, and use of fungicide compared to overhead irrigation system (OIS). CWS helped reduce remarkably the working hours for watering from 4 hours in OSI to just 5 minutes. Labor cost was saved 98% in CWS compared to OIS. By the physical characteristics of various growing media, 1 coconut coir+2 perlite (v/v) mixture was selected because it had an ideal distribution of three phase, e.g. 1 solid: 1 liquid: 2 gas phase. Medium mixture containing scoria had so high bulk and particle density to hurt root. In bark-containing medium, the liquid phase and the percent saturation of liquid phase with time elapsed was lower than that of other mixture. It meant that the mixture contained very low level of water. Application of CWS for cyclamen pot production played an important role in reducing the incident of fusarium wilt symptom from 18% in conventional over watering system to 4%. Cyclamen pot irrigated by capillary wick had shorter petiole and more leaves than those by overhead watering. As a result, this system was highly beneficial to get uniform pot products with high quality. It improved water and nutrient solution efficiency relative to conventional overhead irrigation system (OIS).