• Title/Summary/Keyword: Ground source heat pump

Search Result 270, Processing Time 0.03 seconds

Study on the Operation of the Solar Heating System with Ground Source Heat Pump as a Back-up Device (지열히트펌프 보조열원식 태양열 난방급탕 시스템 작동에 관한 연구)

  • Kim, Hwidong;Baek, Namchoon;Lee, Jinkook;Shin, Uchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.197.2-197.2
    • /
    • 2010
  • The study on the operation characteristics of solar space and water heating system with ground source heat pump (GSHP) as a back-up device was carried out. This system, called solar thermal and geothermal hybrid system (ST/G), was installed at Zero Energy Solar House II (KIER ZeSH-II) in Korea Institute of Energy Research. This ST/G hybrid system was developed to supply all thermal load in a house by renewable energy. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH-II. Experiment was continued for seven months, from October to April. The analysis was conducted as followings ; - the contribution of solar thermal system. - the appropriateness of GSHP as a back-up device. - the performance of solar thermal and ground source heat pump system respectively. - the adaptation of thermal peak load - the operation characteristics of hybrid system under different weather conditions. Finally the complementary measures for the system simplification was referred for the commercialization of this hybrid system.

  • PDF

A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building (현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구)

  • Hwang, Suck-Ho;Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.

Cooling Performance of a Ground Source Heat Pump System (지열히트펌프시스템의 냉방운전에 따른 성능연구)

  • Lee, Jae-Keun;Jeong, Young-Man;Koo, Kyoung-Min;Hwang, Yu-Jin;Jang, Se-Yong;Kim, In-Kyu;Jin, Sim-Won;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.441-446
    • /
    • 2007
  • This present study is to evaluate the cooling performance of a water-to-refrigerant ground source heat pump system(GSHP) under actually operating condition. 1 unit is selected among 10 units of the GSHP in the building to analyze the performance. The average cooling COP of the GSHP at the part load of 64% is 8.2, overall system COP is 6.19. In the GSHP system, the cooling temperature of the condenser is lower compared to the air source heat pump system. Conclusively, the cooling performance of the GSHP is higher than the air source heat pump system by 80%.

  • PDF

Investigation of ground thermal characteristics for performance analysis of borehole heat exchanger (지중 열교환기 성능 분석을 위한 지반 열물성 조사)

  • Shim, Byoung-Ohan;Song, Yoon-Ho;Kim, Hyoung-Chan;Cho, Byong-Wook;Park, Deok-Won;Im, Do-Hyung;Lee, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.587-590
    • /
    • 2005
  • A detailed geothermal characteristics survey with numerical simulations of the heat transfer in a site for ground source heat pump system is necessary for deploying a shallow geothermal utilization system. Density, specific heat, thermal diffusivity, and thermal conductivity are measured on 91 core samples from a 300 m deep borehole in KIGAM(Korea Institute of Geoscience and Mineral Resources). The heat flow is estimated from the thermal gradient and average thermal conductivity and the correlation between fracture system and hydraulic conductivity is analyzed. From the obtained ground information of the study site the performance of the ground heat pump system can be analyzed with some detailed numerical simulations for seasonal heat pump operation skill and optimal system design techniques.

  • PDF

Cooling and Heating Performance Evaluation of a Ground Source Heat Pump (지열원 열펌프의 냉.난방 성능 평가)

  • Sohn, Byong-Hu;Cho, Chung-Sik;Shin, Hyun-Joon;An, Hyung-Jun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2117-2122
    • /
    • 2004
  • The main objective of the present study is to investigate the performance characteristics of a ground source heat pump (GSHP) system with a 130 m vertical 60.5 mm nominal diameter U-bend ground heat exchanger. In order to evaluate the performance analysis, the GSHP system connected to a test room with 90 $m^2$ floor area in the Korea Institute of Construction Technology ($37^{\circ}39'$ N, $126^{\circ}48'$ E) was designed and constructed. This GSHP system mainly consisted of ground heat exchanger, indoor heat pump and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July to January in cooling and heating season of $2003{\sim}2004$. The cooling and heating performance coefficients of the system were determined from the experimental results. The average cooling and heating COPs for the system were obtained to be 4.82 and 3.02, respectively. The temperature variations in ground and the ground heat exchanger surface at different depths were also measured.

  • PDF

A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열히트펌프 시스템 실증연구)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

Performance Analysis of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열 히트펌프 시스템의 성능분석)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.447-452
    • /
    • 2007
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger(GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump ($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

Heating Performance of a Ground Source Multi-Heat Pump for a Greenhouse (지열원 멀티 열펌프 시스템의 시설원예 적용 난방성능 특성 실증 연구)

  • Kang, Shin-Hyung;Choi, Jong-Min;Moon, Je-Myung;Kwon, Hyung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.337-344
    • /
    • 2010
  • Good plant-growth conditions can be achieved by means of using greenhouses. One of the main issues in greenhouse cultivation is energy savings through the development of high efficient heating and cooling system. GSHPs are one of the recommended systems to cope with this pending need. The aim of this study is to investigate the heating performance of ground source multi-heat pump system installed in a greenhouse under part load conditions. Daily average heating COP of the heat pump unit was very high by at least 7.4, because of relatively large condenser, evaporator, and mass flow rate through ground loop heat exchanger. However, the system COP, overall heating coefficient of the performance of the system with heat pump unit and GLHX, decreased drastically due to relatively large power consumption of circulating pump under part load condition. It is suggested that the technology to enhance the performance of the ground source multi-heat pump system for a greenhouse under part load conditions should be developed.

A Study on the High Efficiency Ground Source Heat Pump System (1) (부하추종형 고효율 지열히트펌프 시스템에 관한 연구 (1))

  • Koh, Deuk-Yong;Kim, Ook-Joong;Choi, Sang-Kyu;Chang, Ki-Chang
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.30-37
    • /
    • 2005
  • Cycle simulation of Ground Source Heat Pump[GSHP] system was carried out to determine the design specification of basic components such as turbo compressor and heat exchangers. Part load operation characteristics of the designed GSHP system was estimated using the compressor and heat exchanger performance data. A 50RT class turbo compressor for GSHP system is now under development, in which R134a refrigerant is adopted as working fluid. The compressor with variable cascade diffusers is designed to work both in cooling and heating modes so that it can actively keep up with the climate change with high efficiency. The normal running speeds of the compressor are 59000rpm for heating mode and 70000rpm for tooling mode respectively. It has two identical impellers at both ends of the rotor so as to minimize aero-induced thrust force effectively. GSHP system was coupled with a vortical type heat exchanger, and heat gain and heat loss from ground were evaluated per a bore hole. For the optimal integration of the heat pump system, its header for circulating fluid was combined with the ground heat exchangers in parallel and series configuration.

  • PDF

Ground Surface Temperature Distribution of Korea (우리나라 지표면 온도 분포)

  • Koo, Min-Ho;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.431-433
    • /
    • 2006
  • Accurate information on the ground surface temperature is essential for design of a borehole heat exchanger and thus ensuring the performance of a ground source heat pump system along with knowledge on thermal diffusivity and conductivity of ground. In this study we analyzed the shallow subsurface temperature monitoring data of 58 Korea Meteorological Administration synoptic stations. As a result, we compiled mean annual ground surface temperature distribution map using multiple regression analysis of the monitoring data.

  • PDF