• Title/Summary/Keyword: Ground response

Search Result 1,778, Processing Time 0.031 seconds

Seismic analysis of shear wall buildings incorporating site specific ground response

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.433-453
    • /
    • 2016
  • During earthquake, the motion of ground is affected significantly by source characteristics, source-to-site path properties and local site conditions. Due to the influence of local soil conditions different places experience distinctive amplitude of surface ground motion. Ground response analysis of a specific site utilizing the borehole information at different locations is done in present study. The ground motion with the highest peak ground acceleration for this site obtained from the ground response analysis is used in finite element soil-structure interaction analysis of multi-storey shear wall buildings with various positions of shear walls. The variation in seismic response of buildings and advantageous position of shear wall are determined. The study reveals that providing shear wall at the core of buildings at the specific site is advantageous among all shear wall configurations considered.

Seismic Fragility Analysis of NPP Components for High Frequency Ground Motions (고진동수 지진동에 대한 원전 기기의 지진취약도 분석)

  • 최인길;서정문;전영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.110-117
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large high frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

  • PDF

Contribution of local site-effect on the seismic response of suspension bridges to spatially varying ground motions

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1233-1251
    • /
    • 2016
  • In this paper, it is aimed to determine the stochastic response of a suspension bridge subjected to spatially varying ground motions considering the geometric nonlinearity. Bosphorus Suspension Bridge built in Turkey and connects Europe to Asia in Istanbul is selected as a numerical example. The spatial variability of the ground motion is considered with the incoherence, wave-passage and site-response effects. The importance of site-response effect which arises from the difference in the local soil conditions at different support points of the structure is also investigated. At the end of the study, mean of the maximum and variance response values obtained from the spatially varying ground motions are compared with those of the specialised cases of the ground motion model. It is seen that each component of the spatially varying ground motion model has important effects on the dynamic behaviour of the bridge. The response values obtained from the general excitation case, which also includes the site-response effect causes larger response values than those of the homogeneous soil condition cases. The variance values calculated for the general excitation case are dominated by dynamic component at the deck and Asian side tower. The response values obtained for the site-response effect alone are larger than the response values obtained for the incoherence and wave-passage effects, separately. It can be concluded that suspension bridges are sensitive to the spatial variability of ground motion. Therefore, the incoherence, the wave-passage and especially the site-response effects should be considered in the stochastic analysis of this type of engineering structures.

Effect of Input Soil Properties for Round Robin Test on Ground Response Analysis (지반 응답 해석 Round Robin Test의 입력 지반 물성에 따른 지반 응답 특성 영향 고찰)

  • Kim, Bong-Soo;Lee, Sei-Hyun;Choo, Yun-Wook;Park, Sung-Sik;Kim, Dong-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.305-316
    • /
    • 2007
  • Free field ground motion during earthquake is significantly affected by the local soil conditions and it is essential for the seismic design to perform the site specific ground response analysis. So, Round Robin Test (RRT) on ground response analysis was performed for three sites in Korea. A total of 12 teams presented the results of ground response analysis with used input soil properties based on own judgement. In this paper, the results of one dimensional equivalent linear analysis presented by 11 teams were compared to evaluate the effect of input soil properties on ground response analysis. Additionally, 4 influence factors on ground response analysis, that is shear wave velocity of soil layer, nonlinear dynamic deformational characteristics, bedrock depth and bedrock velocity were studied for assumed simple soil conditions.

  • PDF

Acceleration amplification characteristics of embankment reinforced with rubble mound

  • Jung-Won Yun;Jin-Tae Han;Jae-Kwang Ahn
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.157-166
    • /
    • 2024
  • Generally, the rubble mound installed on the slope embankment of the open-type wharf is designed based on the impact of wave force, with no consideration for the impact of seismic force. Therefore, in this study, dynamic centrifuge model test results were analyzed to examine the acceleration amplification of embankment reinforced with rubble mound under seismic conditions. The experimental results show that when rubble mounds were installed on the ground surface of the embankment, acceleration response of embankment decreased by approximately 22%, and imbalance in ground settlement decreased significantly from eight to two times. Furthermore, based on the experimental results, one-dimensional site response (1DSR) analyses were conducted. The analysis results indicated that reinforcing the embankment with rubble mound can decrease the peak ground acceleration (PGA) and short period response (below 0.6 seconds) of the ground surface by approximately 28%. However, no significant impact on the long period response (above 0.6 seconds) was observed. Additionally, in ground with lower relative density, a significant decrease in response and wide range of reduced periods were observed. Considering that the reduced short period range corresponds to the critical periods in the design response spectrum, reinforcing the loose ground with rubble mound can effectively decrease the acceleration response of the ground surface.

Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata

  • Roy, Narayan;Sahu, R.B.
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • The spatial variation of ground motion in Kolkata Metropolitan District (KMD) has been estimated by generating synthetic ground motion considering the point source model coupled with site response analysis. The most vulnerable source was identified from regional seismotectonic map for an area of about 350 km radius around Kolkata. The rock level acceleration time histories at 121 borehole locations in Kolkata for the vulnerable source, Eocene Hinge Zone, due to maximum credible earthquake (MCE) moment magnitude 6.2 were generated by synthetic ground motion model. Soil investigation data of 121 boreholes were collected from the report of Soil Data Bank Project, Jadavpur University, Kolkata. Surface level ground motion parameters were determined using SHAKE2000 software. The results are presented in the form of peak ground acceleration (PGA) at rock level and ground surface, amplification factor, and the response spectra at the ground surface for frequency 1.5 Hz, 3 Hz, 5 Hz and 10 Hz and 5% damping ratio. Site response study shows higher PGA in comparison with rock level acceleration. Maximum amplification in some portion in KMD area is found to be as high as 3.0 times compared to rock level.

A Study on Characteristics and Dynamic Response Spectrum of Near Fault Ground Motions (근거리지진의 특성과 동적응답스펙트럼에 관한 연구)

  • Bang, Myung-Seok;Han, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.143-151
    • /
    • 2005
  • In this study, it is demonstrated that how the effect of the Near Fault Ground Motion affects the response of the structure. Considering the general characteristic of Near Fault Ground Motion the characteristics of Near Fault Ground Motions is analysed by elastic response spectrums, and the inelastic response spectrum is evaluated with the ductility and the yield strength to consider the inelastic behavior which couldn't be simulated through the elastic response spectrum. The result of this study shows that the effect of Near Fault Ground Motion should be considered in the long period range of long span structures but the domestic seismic design code was developed based on Far Fault Ground Motions, so the effects of Near Fault Ground Motions, which is very serious especially in large structures with a long period, are not considered. Therefore, the effect of the Near Fault Ground Motion has to be examined especially in the seismic performance evaluation of long period structure.

The dynamic response and seismic damage of single-layer reticulated shells subjected to near-fault ground motions

  • Zhang, Ming;Parke, Gerry;Chang, Zhiwang
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • The dynamic response and seismic damage of single-layer reticulated shells in the near field of a rupturing fault can be different from those in the far field due to the different characteristics in the ground motions. To investigate the effect, the dynamic response and seismic damage of this spatial structures subjected to two different ground motions were numerically studied by nonlinear dynamic response analysis. Firstly, twelve seismic waves with an apparent velocity pulse, including horizontal and vertical seismic waves, were selected to represent the near-fault ground motion characteristics. In contrast, twelve seismic records recorded at the same site from other or same events where the epicenter was far away from the site were employed as the far-fault ground motions. Secondly, the parametric modeling process of Kiewitt single-layer reticulated domes using the finite-element package ANSYS was described carefully. Thirdly, a nonlinear time-history response analysis was carried out for typical domes subjected to different earthquakes, followed by analyzing the dynamic response and seismic damage of this spatial structures under two different ground motions based on the maximum nodal displacements and Park-Ang index as well as dissipated energy. The results showed that this spatial structures in the near field of a rupturing fault exhibit a larger dynamic response and seismic damage than those obtained from far-fault ground motions. In addition, the results also showed that the frequency overlap between structures and ground motions has a significant influence on the dynamic response of the single-layer reticulated shells, the duration of the ground motions has little effects.

A Method for Selecting Ground Motions Considering Target Response Spectrum Mean, Variance and Correlation - II Seismic Response (응답 스펙트럼의 평균과 분산, 상관관계를 모두 고려한 지반운동 선정 방법 - II 지진 응답)

  • Ha, Seong Jin;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • This study is the sequel of a companion paper (I. Algorithm) for assessment of the seismic performance evaluation of structure using ground motions selected by the proposed algorithm. To evaluate the effect of the correlation structures of selected ground motions on the seismic responses of a structure, three sets of ground motions are selected with and without consideration of the correlation structure. Nonlinear response history analyses of a 20-story reinforced concrete frame are conducted using the three sets of ground motions. This study shows that the seismic responses of the frames vary according to ground motion selection and correlation structures.

Quantitative Analysis of the Swimming Movements of Flatfish Reacting to the Ground Gear of Bottom Trawls

  • Kim, Yong-Hae;Wardle Clem S.
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.167-174
    • /
    • 2006
  • Two typical responses have been documented for flatfish when they encounter the ground gear of bottom trawls: herding response and falling back response. These two responses were analyzed from video recordings of fish and were characterized by time sequences for four parameters: swimming speed, angular velocity, acceleration, and distance between the fish and the ground gear. When flatfish displayed the falling-back response, absolute values of the three swimming parameters and their deviations were significantly higher than those during the herding response. However, the swimming parameters were not dependent on the distance between the flatfish and the ground gear, regardless of which response occurred. The dominant periods for most of the movement parameters ranged from 2.0 to 3.7 s, except that no periodicity was observed for swimming speed or angular velocity during the falling-back response. However, variations in the four parameters during the falling -back response revealed greater irregularity in periodicity and higher amplitudes. This complex behavior is best described as a chaos phenomenon' and is discussed as the building block for a model predicting the responses of flatfish to ground gear as part of the general understanding of the fish capture process.