• Title/Summary/Keyword: Ground points, Non-ground points

Search Result 67, Processing Time 0.027 seconds

A Segmented Morphology Filter for Airborne LiDAR Data (Airborne LiDAR 필터에 관한 연구)

  • Choi, Seung-Sik;Song, Nak-Hyeon;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2007
  • Recent advances in airborne LiDAR technology allow rapid and inexpensive measurements of topography over large areas. The generation of DTM/DEM is essential to numerous applications such as the fields of civil engineering, environment, city planning and flood modeling. The demand for LiDAR data is increasing due to the reduced cost for DTM generation and the increased reliability, precision and completeness. In order to generate DTM, measurements from non-ground features such as building and vegetation have to be classified and removed. In this paper, a segmented morphology filter was developed to detect non-ground LiDAR measurements. First, segments LiDAR point clouds based on the elevation. Secondly classifies those protruding segments into non-ground points. Those non-ground points such as building and vegetation are removed, while ground points are preserved for DTM generation. For experiments, data sets used in Comparison of Filters (ISPRS, 2003) depicting urban and rural areas were selected. The experimental results show that the proposed filter can remove most of the non-ground points effectively with less commission and omission errors.

Non-Metric Digital Camera Lens Calibration Using Ground Control Points (지상기준점을 이용한 비측량용 카메라 렌즈 캘리브레이션)

  • Won, Jae-Ho;So, Jae-Kyeong;Yun, Hee-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.173-180
    • /
    • 2012
  • The most recent, 80 mega pixels digital camera appeared through the development of digital technology, and nonmetric digital cameras have been using in various field of photogrammetry. In this study, we experimented lens calibration using aerial photographs and ground control points. The aerial photographs were taken a non-metric digital camera which is CMOS(Complementary Metal Oxide Semiconductor) 21.1 mega pixels sensor and 35mm lens at a helicopter. And the ground control points were selected on the 1:1,000 plotting origin data. As a result, we calculated focal length, PPA(Principal Point of Autocollimation) and symmetric radial distortion coefficients from the lens. Also, RMSE(root mean square error) and maximum residual of the ground control points from the aerial triangulation were compared before and after calibration. And we found that the accuracy of the after calibration was improved very significantly.

A Study on the Pollution Sources of Simple water Supply Piped System using Statistical Analysis (통계적 분석을 이용한 간이급수시설의 오염원에 관한 연구)

  • 이홍근;김현용;백도현;김지영;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.56-67
    • /
    • 1999
  • This study was performed to suggest the basic data and plans for the establishment of safe water supply plans in simple water supply piped system in the rural areas. In 4 different places, 24 points of water sources 36 points of taps from water sources were sampled. Of the whole 60 points, 55 points were ground water and 5 points were surface water. 14 items were measured for the analysis of water quality on each samples. The measured items were analyzed again by statistical method ; cluster analysis and principle components analysis. The results of this study are as followed. 1) In water quality analysis on water sources, 4 items, bacteria, E.coli, NH3-N and Fe exceed the standard. Of 24 points, 20 points(83%) on bacteria, 1 point(4%) on NH3-N and Fe exceed the standard. 2) In water quality analysis on near and remote taps, 4 items, bacteria, E.coli, NH3-N and Fe , exceed the standard. Of 36 points, 20 points (81%) on bactria, 1 pint(3%) on NH3-N and Fe exceed the standard. 3)Cluster analysis on water quality shows the differences by the kinds of water sources, geographical characteristics and distance from water sources. 4) Principle components analysis on ground water shows that Factor 1 and Factor 3 are natural fluctuation by the content of soil. Also, Factor 2 and Factor 4 are penetration of pollutants to underground. Therefore, it is needed to take deeper ground water in order to prevent from pollution in the areas which have ground water as water source . 5) Principle components analysis on surface water shows that Factor 1 is penetration of vacteria from surface to water source when rainfalls. Also, Factor 2 is fluctuation of water quality by the geographical characteristics. Therefore, the counterplans against non-point pollution source must be taken. Filtration and disinfection facilities are needed in the areas which have surface water as water source.

  • PDF

Extraction of Ground Points from LiDAR Data using Quadtree and Region Growing Method (Quadtree와 영역확장법에 의한 LiDAR 데이터의 지면점 추출)

  • Bae, Dae-Seop;Kim, Jin-Nam;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.41-47
    • /
    • 2011
  • Processing of the raw LiDAR data requires the high-end processor, because data form is a vector. In contrast, if LiDAR data is converted into a regular grid pattern by filltering, that has advantage of being in a low-cost equipment, because of the simple structure and faster processing speed. Especially, by using grid data classification, such as Quadtree, some of trees and cars are removed, so it has advantage of modeling. Therefore, this study presents the algorithm for automatic extraction of ground points using Quadtree and refion growing method from LiDAR data. In addition, Error analysis was performed based on the 1:5000 digital map of sample area to analyze the classification of ground points. In a result, the ground classification accuracy is over 98%. So it has the advantage of extracting the ground points. In addition, non-ground points, such as cars and tree, are effectively removed as using Quadtree and region growing method.

Filtering Airborne Laser Scanning Data by Utilizing Adjacency Based on Scan Line (스캔 라인 기반의 인접 관계를 이용한 항공레이저측량 자료의 필터링)

  • Lee, Jeong-Ho;Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • This study aims at filtering ALS points into ground and non-ground effectively through labeling and window based algorithm by utilizing 2D adjacency based on scan line. Firstly, points adjacency is constructed through minimal search based on scan line. Connected component labeling algorithm is applied to classify raw ALS points into ground and non-ground by utilizing the adjacency structure. Then, some small objects are removed by morphology filtering, and isolated ground points are restored by IDW estimation. The experimental results shows that the method provides good filtering performance( about 97% accuracy) for diverse sites, and the overall processing takes less time than converting raw data into TIN or raster grid.

Accuracy Assessment of DTM Generation Using LIDAR Data (LIDAR 자료를 이용한 DTM 생성 정확도 평가)

  • Yoo Hwan Hee;Kim Seong Sam;Chung Dong Ki;Hong Jae Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2005
  • 3D models in urban areas are essential for a variety of applications, such as virtual visualization, GIS, and mobile communications. LIDAR (Light Detection and Ranging) is a relatively new technology for obtaining Digital Terrain Models (DTM) of the earth's surface since manual 3D data reconstruction is very costly and time consuming. In this paper an approach to extract ground and non-ground points data from LIDAR data by using filtering is presented and the accuracy for generating DTM from ground points data is evaluated. Numerous filter algorithms have been developed to date. To determine the performance of filtering, we selected three filters which are based on the concepts for height difference, slope, and morphology, and also were applied two different data acquired from high raised apartments areas and low house areas. From the results it has been found that the accuracy for generating DTM from LIDAR data are 0.16 m and 0.59 m in high raised apartments areas and low house areas respectively. We expect that LIDAR data is used to generate the accurate DTM in urban areas.

ORTHORECTIFICATION OF A DIGITAL AERIAL IMAGE USING LIDAR-DRIVEN ELEVATION INFORMATION

  • Yoon, Jong-Suk
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.181-184
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study sequentially utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using DTM and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

  • PDF

Ortho-rectification of a Digital Aerial Image using LiDAR-derived Elevation Model in Forested Area

  • Yoon, Jong-Suk
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.463-471
    • /
    • 2008
  • The quality of orthoimages mainly depends on the elevation information and exterior orientation (EO) parameters. Since LiDAR data directly provides the elevation information over the earth's surface including buildings and trees, the concept of true orthorectification has been rapidly developed and implemented. If a LiDAR-driven digital surface model (DSM) is used for orthorectification, the displacements caused by trees and buildings are effectively removed when compared with the conventional orthoimages processed with a digital elevation model (DEM). This study utilized LiDAR data to generate orthorectified digital aerial images. Experimental orthoimages were produced using digital terrain model (DTM) and DSM. For the preparation of orthorectification, EO components, one of the inputs for orthorectification, were adjusted with the ground control points (GCPs) collected from the LiDAR point data, and the ground points were extracted by a filtering method used in a previous research. The orthoimage generated by DSM corresponded more closely to non-ground LiDAR points than the orthoimage produced by DTM.

Comprehensive Comparisons among LIDAR Fitering Algorithms for the Classification of Ground and Non-ground Points (지면.비지면점 분류를 위한 라이다 필터링 알고리즘의 종합적인 비교)

  • Kim, Eui-Myoung;Cho, Du-Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • Filtering process that separates ground and non-ground points from LIDAR data is important in order to create the digital elevation model (DEM) or extract objects on the ground. The purpose of this research is to select the most effective filtering algorithm through qualitative and quantitative analysis for the existing filtering method used to extract ground points from LIDAR data. For this, four filtering methods including Adaptive TIN(ATIN), Perspective Center-based filtering method(PC), Elevation Threshold with Expand Window(ETEW) and Progressive Morphology(PM) were applied to mountain area, urban area and the area where building and mountains exist together. Then the characteristics for each method were analyzed. For the qualitative comparison of four filtering methods used for the research, visual method was applied after creating shaded relief image. For the quantitative comparison, an absolute comparison was conducted by using control points observed by GPS and a relative comparison was conducted by the digital elevation model of the National Geographic Information Institute. Through the filtering experiment of the LIDAR data, the Adaptive TIN algorithm extracted the ground points in mountain area and urban area most effectively. In the area where buildings and mountains coexist, progressive morphology algorithm generated the best result. In addition, as a result of qualitative and quantitative comparisons, the applicable filtering algorithm regardless of topographic characteristics appeared to be ATIN algorithm.

Building Points Classification from Raw LiDAR Data by Information Theory (정보이론에 의한 LiDAR 원시자료의 건물포인트 분류기법 연구)

  • Choi Yun-Woong;Jang Young-Woon;Cho Gi-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.469-473
    • /
    • 2006
  • In general, a classification process between ground data and non-ground data, which include building objects, is required prior to producing a DEM for a certain surface reconstruction from LiDAR data in which the DEM can be produced from the ground data, and certain objects like buildings can be reconstructed using non-ground data. Thus, an exact classification between ground and non-ground data from LiDAR data is the most important factor in the ground reconstruction process using LiDAR data. In particular, building objects can be largely used as digital maps, orthophotos, and urban planning regarding the object in the ground and become an essential to providing three dimensional information for certain urban areas. In this study, an entropy theory, which has been used as a standard of disorder or uncertainty for data used in the information theory, is used to apply a more objective and generalized method in the recognition and segmentation of buildings from raw LiDAR data. In particular, a method that directly uses the raw LiDAR data, which is a type of point shape vector data, without any changes, to a type of normal lattices was proposed, and the existing algorithm that segments LiDAR data into ground and non-ground data as a binarization manner was improved. In addition, this study proposes a generalized building extraction method that excludes precedent information for buildings and topographies and subsidiary materials, which have different data sources.

  • PDF