• Title/Summary/Keyword: Ground observation

Search Result 653, Processing Time 0.024 seconds

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

An optical design of a high resolution earth observation camera for small satellites (소형 위성용 고해상도 광학카메라 광학설계)

  • 이준호;김용민;이응식;유상근;김이을;최영완;박동조
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.6-12
    • /
    • 2000
  • A space-borne earth observation camera is an electro-optical instrument to measure the characteristics of the earth's surface, and to transmit the measured data to a ground station(s). The specifications of a space-borne camera, such as resolution, swath width and observation bands, are determined by its mission objectives. This paper lists some specifications of a camera suitable for small satellite and then presents an optical design, with the results of tolerancing analysis, which satisfies the given specifications. tions.

  • PDF

A Study on Development of an Earthquake Ground-motion Database Based on the Korean National Seismic Network (국가지진관측망 기반 지진동 데이터베이스 개발 연구)

  • Choi, Sae-Woon;Rhie, Junkee;Lee, Sang-Hyun;Kang, Tae-Seob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.277-283
    • /
    • 2020
  • In order to improve the ground-motion prediction equation, which is an important factor in seismic hazard assessment, it is essential to obtain good quality seismic data for a region. The Korean Peninsula has an environment in which it is difficult to obtain strong ground motion data. However, because digital seismic observation networks have become denser since the mid-2000s and moderate earthquake events such as the Odaesan earthquake (Jan. 20, 2007, ML 4.8), the 9.12 Gyeongju earthquake (Sep. 12, 2016, ML 5.8), and the Pohang earthquake (Nov. 15, 2017, ML 5.4) have occurred, some good empirical data on ground motion could have been accumulated. In this study, we tried to build a ground motion database that can be used for the development of the ground motion attenuation equation by collecting seismic data accumulated since the 2000s. The database was constructed in the form of a flat file with RotD50 peak ground acceleration, 5% damped pseudo-spectral acceleration, and meta information related to hypocenter, path, site, and data processing. The seismic data used were the velocity and accelerogram data for events over ML 3.0 observed between 2003 and 2019 by the Korean National Seismic Network administered by the Korea Meteorological Administration. The final flat file contains 10,795 ground motion data items for 141 events. Although this study focuses mainly on organizing earthquake ground-motion waveforms and their data processing, it is thought that the study will contribute to reducing uncertainty in evaluating seismic hazard in the Korean Peninsula if detailed information about epicenters and stations is supplemented in the future.

On Ground-Truth Designs of Radar Rainfall Using Rain Gauge Rainfall (우량계 강우를 이용한 레이더 강우의 Ground-Truth 방법 검토)

  • Yoo, Chul-Sang;Kim, Byoung-Soo;Kim, Kyoung-Jun;Choi, Jeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.743-754
    • /
    • 2007
  • This study theoretically compared three possible methods for the ground-truth, that is three ground-truth designs of radar rainfall using the rain gauge rainfall. Theoretical results derived are first applied to the rainfall field generated by the Waymire-Gupta-Rodriguez Iturbe(WGR) model, and then to the Mt. Gwanak radar data using the rain gauge data from MOCT within the radar range of observation. Overall application results were found to be similar to those from theoretical studies, also those from the application to the WGR rainfall field. In conclusion, the ground-truth design using only positive(+) rainfalls from both radar and rain gauges causes serious design bias to be inappropriate as a ground-truth design.

Component fragility assessment of a long, curved multi-frame bridge: Uniform excitation versus spatially correlated ground motions

  • Jeon, Jong-Su;Shafieezadeh, Abdollah;DesRoches, Reginald
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.633-644
    • /
    • 2018
  • This paper presents the results of an assessment of the seismic fragility of a long, curved multi-frame bridge under multi-support earthquake excitations. To achieve this aim, the numerical model of columns retrofitted with elliptical steel jackets was developed and validated using existing experimental results. A detailed nonlinear numerical model of the bridge that can capture the inelastic response of various components was then created. Using nonlinear time-history analyses for a set of stochastically generated spatially variable ground motions, component demands were derived and then convolved with new capacity-based limit state models to obtain seismic fragility curves. The comparison of failure probabilities obtained from uniform and multi-support excitation analyses revealed that the consideration of spatial variability significantly reduced the median value of fragility curves for most components except for the abutments. This observation indicates that the assumption of uniform motions may considerably underestimate seismic demands. Moreover, the spatial correlation of ground motions resulted in reduced dispersion of demand models that consequently decreased the dispersion of fragility curves for all components. Therefore, the spatial variability of ground motions needs to be considered for reliable assessment of the seismic performance of long multi-frame bridge structures.

The Bearing Capacity of Top Base Foundations in Soft Ground (연약지반상 팽이기초 적용에 따른 지지특성)

  • Kim, Chan-Kuk;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.401-414
    • /
    • 2010
  • Top Base Foundation(TBF) is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and restraining settlement of foundations when the bearing capacity of ground is not enough. However, when the design values from exiting Japanese standard are compared with the observation values from the field measurement, the bearing capacity of exiting standard estimated smaller For this reason, it is necessary to establish more reasonable prediction technique considering to understand the behavior of TBF in soft ground. In this study, 1/5 scale model tests were performed in the laboratory. Also, full scale tests were carried out in order to investigate the behavior of TBF with various shapes. In addition, about 100 sites measurement data were evaluated to investigate the behavior of TBF in various ground conditions. Based on the results of the model tests and field measurement data, it was possible to establish more reasonable the bearing capacity equation of TBF considering various N-value of soil, the effect of underground water and failure shapes.

  • PDF

Assessment of Coastal Ground Water Discharge for Complex Coastlines (해안선의 형태를 고려한 지하수 해안 유출량 평가 기법)

  • Han, Su-Young;Hong, Sung-Hoon;Park, Nam-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.939-947
    • /
    • 2004
  • Amount of ground water discharging through coastline(CGD) is small compared to the amount of river discharges. However, CGD is important for gound water development in coastal areas and for contamination of coastal waters by nutrients transported by ground water. In the previous study, a method was proposed to estimate CGD from simple data such as ground water levels at observation wells and hydraulic conductivities. In this study, the method is enhanced by taking into account complexity of coastlines. A new method is proposed to estimate average hydraulic gradient, length of coastline, and average thickness of freshwater The new method is verified against numerical solutions. It is shown that the method is able to estimate CGD from complex coastlines more accurately than the previous method.

NATE터널의 갱문 가시설 배후 균열에 따른 조치 및 보강사례

  • Kil, Ho-Un;Kim, Jin-Hong;Yoo, Jai-Sung;Cha, Bok-Nam
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.342-355
    • /
    • 2006
  • The Tunnel portal is designed on temporary support system which is composed by 28m height H-Pile method and Ground Anchor method. The tunnel has excavated about 30m from the portal, but some deformation is found on the surface ground just above the tunnel face. It was investigated very carefully to find out the causes of deformation. By the observation and study, two main causes of deformation are found out. The one is earth pressure increase compared with classical earth pressure theory. That was due to the direction of ground rock mass's discontinuities. It causes the increase of earth pressure that are activated by the direction of discontinuity. The other one is that present design method neglect the transferred force by removal of temporary support members and ground anchor within the tunnel contour line as the tunnel excavation proceeds As the result of removals of the member and anchor, some force transferred from removed systems to remaining supporting systems. In designing the portal support systems, lt must be considered the discontiunity of ground mass and the transfered force due to excation.

  • PDF

Wing-In-Ground Effect on Free Surface

  • Kim, Yong-Hwan;Rhee, Shin-Hyung;Jee, Sang-Min
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.39-50
    • /
    • 2007
  • This study aims the observation of wing-in-ground effect near free surface. Numerical computations are carried out to observe the deformation of free surface and the effects on lift and drag. The detailed flow fields around two- and three-dimensional wings with NACA 0012 section are observed from the results of a commercial CFD program, FLUENT, and the local deformations of free surface are obtained by applying a Rankine panel method. In the present cases, the small deformation of free surface under the wings is observed, but different forces are found between solid wall and free surface when the speed of wings becomes large.

Random Amplitude Variability of Seismic Ground Motions and Implications for the Physical Modeling of Spatial Coherency

  • Zerva, A.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.139-150
    • /
    • 2001
  • An initial approach for the identification of physical causes underlying the spatial coherency of seismic ground motions it presented. The approach relies on the observation that amplitude and phase variability of seismic data recorded over extended areas around the amplitude and phase of a common, coherent component are correlated. It suffices then to examine the physical causes for the amplitude variability in the seismic motions, in order to recognize the causes for the phase variability and, consequently, the spatial coherency. In this study, the effect of randomness in the shear wave velocity at a site on the amplitude variability of the surface motions mi investigated by means of simulations. The amplitude variability of the simulated motions around the amplitude of the common component is contained within envelope functions, the shape of which suggests, on a preliminary basis, the trend of the decay of coherency with frequency.

  • PDF