• Title/Summary/Keyword: Ground observation

Search Result 646, Processing Time 0.034 seconds

The Application of TMP Method on Suk-San Highway Bridge (석산육교 공동충전을 위한 가소상 모르타르 충진(TMP)공법 적용)

  • Han, Bog-Kyu;Shin, Gaon-Su;Cheong, Hai-Moon;Lee, Jea-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.626-629
    • /
    • 2006
  • Suk-San highway bridge, located on a soft ground environment, had been examined the current condition of settlement estimation throughout G.P.R(Ground Penetrating Radar), general observation and visual observation(video camera & scope). According to the above observations, the ground of this area has sunk about thirty centimeters since 1996. Also, currently, Suk-San highway bridge has been disjoining the gap between the structure and ground. Therefore, it is necessary to fill it up the gap. The purpose of this paper is to report the effects of Sunk-San highway bridge was observed by G.P.R. & general observation etc. and to present the results of repair of Suk-San highway bridge filling the gap up.

  • PDF

Development of Ground-based GNSS Data Assimilation System for KIM and their Impacts (KIM을 위한 지상 기반 GNSS 자료 동화 체계 개발 및 효과)

  • Han, Hyun-Jun;Kang, Jeon-Ho;Kwon, In-Hyuk
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.191-206
    • /
    • 2022
  • Assimilation trials were performed using the Korea Institute of Atmospheric Prediction Systems (KIAPS) Korea Integrated Model (KIM) semi-operational forecast system to assess the impact of ground-based Global Navigation Satellite System (GNSS) Zenith Total Delay (ZTD) on forecast. To use the optimal observation in data assimilation of KIM forecast system, in this study, the ZTD observation were pre-processed. It involves the bias correction using long term background of KIM, the quality control based on background and the thinning of ZTD data. Also, to give the effect of observation directly to data assimilation, the observation operator which include non-linear model, tangent linear model, adjoint model, and jacobian code was developed and verified. As a result, impact of ZTD observation in both analysis and forecast was neutral or slightly positive on most meteorological variables, but positive on geopotential height. In addition, ZTD observations contributed to the improvement on precipitation of KIM forecast, specially over 5 mm/day precipitation intensity.

Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

  • Kim, Jae-Hyuk;Jo, Jung-Hyun;Choi, Jin;Moon, Hong-Kyu;Choi, Young-Jun;Yim, Hong-Suh;Park, Jang-Hyun;Park, Eun-Seo;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.319-332
    • /
    • 2011
  • The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory) were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking of domestic satellites and verified that optical observation time sufficient to maintain the precise ephemeris could be acquired at the determined observatories.

DETERMINATION OF USER DISTRIBUTION IMAGE SIZE AND POSITION OF EACH OBSERVATION AREA OF METEOROLOGICAL IMAGER IN COMS

  • Seo, Jeong-Soo;Seo, Seok-Bae;Kim, Eun-Kyou;Jung, Sung-Chul
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.228-231
    • /
    • 2006
  • In this paper, requirements of Meteorological Administration about Meteorological Imager (MI) of Communications, Ocean and Meteorological Satellite (COMS) is analyzed for the design of COMS ground station and according to the analysis results, the distribution image size of each observation area suitable for satellite Field Of View (FOV) stated at the requirements of meteorological administration is determined and the precise satellite FOV and the size of distribution image is calculated on the basis of the image size of the determined observation area. The results in this paper were applied to the detailed design for COMS ground station and also are expected to be used for the future observation scheduling and the scheduling of distribution of user data.

  • PDF

A Study on Automation of Image Collection Planning

  • Han, Jae-Joong;Jung, Kyung-Jin;Choi, Jae-Seung;Kwak, Sung-Hee;Kim, Moong-Yu
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.743-752
    • /
    • 2011
  • One of main concerns of operators of the Earth observation satellite is taking images as many as possible under the constraints of satellite resources during fixed period. In order to achieve this goal, satellite operators are strongly required to generate the optimized image collection plans, and it is a very time consuming process to achieve an optimized image collection plan when it is done by manual. This paper suggests automation of image collection planning based on the dynamic programming algorithm to reduce the time required for image collection planning. The validity of the proposed method is tested using operating satellite system and the result is given in this paper.

GOES-9 Raw Data Acquisition & Image Extraction

  • Kang C. H.;Park D. J.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.582-585
    • /
    • 2005
  • The Geostationary Operational Environmental Satellite (GOES) 9, which is currently located at 155°E geostationary orbits, has transmitted earth observation data acquired by imager to CDA at NOAA. After the acquisition on ground, observation data are corrected on ground and re-transmitted to GOES-9 for the dissemination to users. In this paper, the procedure and result from raw data acquisition and pre-processing for earth observation imagery retrieval from GOES-9 Raw data acquired in Korea at May 2005 are introduced.

  • PDF

Urban Excavation and Observational Method (도심지 지하굴착 및 정보화 시공)

  • Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.3-14
    • /
    • 2005
  • Reliable predictions of the movement of earth retaining structures and the ground adjacent to braced walls in urban excavation are often difficult due to many variable factors. The ground settlement and the damage of adjacent structures in urban excavation has been an important issue. Therefore, the stability of the adjacent structures must be secured with the excavation support and research on the protection of adjacent structure is necessary. This study showed an urban excavation case and introduce observation method for case of damage behavior in urban excavation.

  • PDF

HYPERSPECTRAL IMAGERY AND SPECTROSCOPY FOR MAPPING DISTRIBUTION OF HEAVY METALS ALONG STREAMLINES

  • Choe, Eun-Young;Kim, Kyoung-Woong;Meer, Freek Van Der;Ruitenbeek, Frank Van;Werff, Harald Van Der;Smeth, Boudewijn De
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.397-400
    • /
    • 2007
  • For mapping the distribution of heavy metals in the mining area, field spectroscopy and hyperspectral remote sensing were used in this study. Although heavy metals are spectrally featureless from the visible to the short wave infrared range, possible variations in spectral signal due to heavy metals bound onto minerals can be explained with the metal binding reaction onto the mineral surface. Variations in the spectral absorption shapes of lattice OH and oxygen on the mineral surface due to the combination of heavy metals were surveyed over the range from 420 to 2400 nm. Spectral parameters such as peak ratio and peak area were derived and statistically linked to metal concentration levels in the streambed samples collected from the dry stream channels. The spatial relationships between spectral parameters and concentrations of heavy metals were yielded as well. Based on the observation at a ground level for the relationship between spectral signal and metal concentration levels, the spectral parameters were classified in a hyperspectral image and the spatial distribution patterns of classified pixels were compared with the product of analysis at the ground level. The degree of similarity between ground dataset and image dataset was statistically validated. These techniques are expected to support assessment of dispersion of heavy metal contamination and decision on optimal sampling point.

  • PDF

Evaluation of Ku-band Ground-based Interferometric Radar Using Gamma Portable Radar Interferometer

  • Hee-Jeong, Jeong;Sang-Hoon, Hong;Je-Yun, Lee;Se-Hoon, Song;Seong-Woo, Jung;Jeong-Heon, Ju
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.65-76
    • /
    • 2023
  • The Gamma Portable Radar Interferometer (GPRI) is a ground-based real aperture radar (RAR) that can acquire images with high spatial and temporal resolution. The GPRI ground-based radar used in this study composes three antennas with a Ku-band frequency of 17.1-17.3 GHz (1.73-1.75 cm of wavelength). It can measure displacement over time with millimeter-scale precision. It is also possible to adjust the observation mode by arranging the transmitting and receiving antennas for various applications: i) obtaining differential interferograms through the application of interferometric techniques, ii) generation of digital elevation models and iii) acquisition of full polarimetric data. We introduced the hardware configuration of the GPRI ground-based radar, image acquisition, and characteristics of the collected radar images. The interferometric phase difference has been evaluated to apply the multi-temporal interferometric SAR application (MT-InSAR) using the first observation campaigns at Pusan National University in Geumjeong-gu, Busan.

Low-Profile Omni-Directional Microstrip Antenna Using Wired Ground Structure For Observation Munition (정찰포탄용 접지선 구조를 이용한 평판형 무지향성 마이크로스트립 안테나)

  • Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1112-1115
    • /
    • 2019
  • This paper proposes a novel low-profile omni-directional microstrip antenna to mount on the deployable wing of the observation munition. The proposed antenna is designed on seven hexagonal resonators in a quasi-circular array to achieve a monopolar radiation pattern with a thin substrate. By employing the mesh ground structures, the resonant frequencies and impedance bandwidths of the proposed antenna is investigated. To verify the feasibility of the mesh ground structure, the thin ground wire width is investigated theoretically for improving the 3-dB fractional bandwidth, realized antenna gain and quality-factor. The proposed antenna demonstrates a good monopolar radiation in good agreement with the simulation results. The implemented prototype shows the measured bandwidth of 326 MHz with respect to 5.65% centered at 5.77 GHz and realized gain of 5.49 dBi at 5.84 GHz.