• Title/Summary/Keyword: Ground motions

Search Result 900, Processing Time 0.02 seconds

Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - II Seismic Response (구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - II 지진응답)

  • Ha, Seong Jin;Han, Sang Whan;Oh, Jang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.181-188
    • /
    • 2017
  • Current seismic design provisions such as ASCE 7-10 provide criteria for selecting ground motions for conducting response history analysis. This study is the sequel of a companion paper (I - Ground Motion Selection) for assessment of the ASCE 7-10 criteria. To assess of the ASCE 7-10 criteria, nonlinear response history analyses of twelve single degree of freedom (SDF) systems and one multi-degree of freedom (MDF) system are conducted in this study. The results show that the target seismic demands for SDF can be predicted using the mean seismic demands over seven and ten ground motions selected according to the proposed method within an error of 30% and 20%, respectively

Multi-point earthquake response of the Bosphorus Bridge to site-specific ground motions

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Harmandar, Ebru;Catbas, Necati
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.197-211
    • /
    • 2018
  • The study presents the earthquake performance of the Bosphorus Bridge under multi-point earthquake excitation considering the spatially varying site-specific earthquake motions. The elaborate FE model of the bridge is firstly established depending on the new considerations of the used FEM software specifications, such as cable-sag effect, rigid link and gap elements. The modal analysis showed that singular modes of the deck and the tower were relatively effective in the dynamic behavior of the bridge due to higher total mass participation mass ratio of 80%. The parameters and requirements to be considered in simulation process are determined to generate the spatially varying site-specific ground motions. Total number of twelve simulated ground motions are defined for the multi-support earthquake analysis (Mp-sup). In order to easily implement multi-point earthquake excitation to the bridge, the practice-oriented procedure is summarized. The results demonstrated that the Mp-sup led to high increase in sectional forces of the critical components of the bridge, especially tower base section and tensile force of the main and back stay cables. A close relationship between the dynamic response and the behavior of the bridge under the Mp-sup was also obtained. Consequently, the outcomes from this study underscored the importance of the utilization of the multi-point earthquake analysis and the necessity of considering specifically generated earthquake motions for suspension bridges.

Stochastic Prediction of Strong Ground Motions in Southern Korea (추계학적 보사법을 이용한 한반도 남부에서의 강지진동 연구)

  • 조남대;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.17-26
    • /
    • 2001
  • In order to estimate peak ground motions and frequency characteristics of strong ground motions in southern korea, we employed the stochastic simulation method with the moment magnitude(M$_{w}$) and the hypocentral distance(R). We estimated same input parameters that account for specific properties of source and propagation processes, and applied them to the stochastic simulation method. The stress drop($\Delta$$\sigma$) of 100-bar was estimated considering results of research in ENA, China, and southern korea. The attenuation parameter x was calculated by analyzing 57 seismograms recorded from September 1996 to October 1997 and the estimation result of the attenuation parameter x is 0.00112+0.000224 R where R is hypocenter distance. We estimated strong ground motion relations using the stochastic simulation method with suitable input parameters(e.g. $\Delta$$\sigma$, x, and so on). At last, we derived relations between hypocentral distances and ground motions(seismic attenuation equation) using results of the stochastic prediction.esults of the stochastic prediction.n.

  • PDF

Development of the Damping Coefficients for Weak and Moderate Earthquake Ground Motions

  • Kim, Myeong-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.1-6
    • /
    • 2008
  • Most of seismic design code provisions provide the design response spectra for defining design earthquake ground motions. The design spectra in the code provisions generally come under the 5% of critical damping value, which corresponds to the responses of common structure under the design earthquake. Energy dissipation devices and seismic isolation systems became more popular and the design response spectra at higher damping levels are required. Damping coefficients can be effectively used in conversion of 5%-damped design spectra into other damping levels. These coefficients in the current seismic design code provisions are based on the strong ground motion records. Since the weak and moderate earthquake data have different characteristics from those of strong earthquake data, the application of these coefficients should be investigated in the weak and moderate earthquakes zones. In this study, damping coefficients based on the weak and moderate ground motions were developed and compared to those of current seismic design code provisions.

Characteristics of Earthquake Responses of a Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions (수평 양방향 지반운동이 작용하는 직사각형 액체저장탱크의 지진응답 특성)

  • Lee, Jin Ho;Lee, Se Hyeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Analytical and experimental studies show that the dynamic behavior of liquid storage tanks is significantly influenced by the fluid-structure interaction (FSI). The effects of FSI must be rigorously considered for accurate earthquake analysis and seismic design of liquid storage tanks. In this study, a dynamic analysis of a rectangular liquid storage tank subjected to bi-directional earthquake ground motions is performed and its dynamic characteristics are examined, with the effects of FSI rigorously considered. Hydrodynamic pressure is evaluated using the finite-element approach with acoustic elements and applied to the structure. The responses of the rectangular tank subjected to bi-directional earthquake ground motions are thus obtained. It can be observed that the incident angle of bi-directional horizontal ground motions has significant effects on the dynamic responses of the considered system. Therefore, the characteristics of the system must be considered in its seismic design and performance evaluation.

Probabilistic sensitivity analysis of multi-span highway bridges

  • Bayat, M.;Daneshjoo, F.;Nistico, N.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.237-262
    • /
    • 2015
  • In this study, we try to compare different intensity measures for evaluating nonlinear response of bridge structure. This paper presents seismic analytic fragility of a three-span concrete girder highway bridge. A complete detail of bridge modeling parameters and also its verification has been presented. Fragility function considers the relationship of intensities of the ground motion and probability of exceeding certain state of damage. Incremental dynamic analysis (IDA) has been subjected to the bridge from medium to strong ground motions. A suite of 20 earthquake ground motions with different range of PGAs are used in nonlinear dynamic analysis of the bridge. Complete sensitive analyses have been done on the response of bridge and also efficiency and practically of them are studied to obtain a proficient intensity measure for these types of structure by considering its sensitivity to the period of the bridge. Three dimensional finite element (FE) model of the bridge is developed and analyzed. The numerical results show that the bridge response is very sensitive to the earthquake ground motions when PGA and Sa (Ti, 5%) are used as intensity measure (IM) and also indicated that the failure probability of the bridge system is dominated by the bridge piers.

Analysis of seismic mid-column pounding between low rise buildings with unequal heights

  • Jiang, Shan;Zhai, Changhai;Zhang, Chunwei;Ning, Ning
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.395-402
    • /
    • 2018
  • Floor location of adjacent buildings may be different in terms of height elevation, and thus, the slab may hit on the columns of adjacent insufficiently separated buildings during severe ground motions. Such impacts, often referred to as mid-column pounding, can be catastrophic. Substantial pounding damage or even total collapse of structures was often observed in large amount of adjacent low rise buildings. The research on the mid-column pounding between low rise buildings is in urgency need. In present study, the responses of two adjacent low rise buildings with unequal heights and different dynamic properties have been analyzed. Parametric studies have also been conducted to assess the influence of story height difference, gap distance and input direction of ground motion on the effect of structural pounding response. Another emphasis of this study is to analyze the near-fault effect, which is important for the structures located in the near-fault area. The analysis results show that collisions exhibit significant influence on the local shear force response of the column suffering impact. Because of asymmetric configuration of systems, the structural seismic behavior is distinct by varying the incident directions of the ground motions. Results also show that near-fault earthquakes induced ground motions can cause more significant effect on the pounding responses.

Generation of Artificial Earthquake Ground Motions for the Area with Low Seismicity (국내 지진 기록을 이용한 약진 지역에서의 인공지진파 발생에 관한 연구)

  • 김승훈;이승창;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.497-504
    • /
    • 1998
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well own that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This model is based on the simulation for the strong-motion earthquakes with magnitude greater than approximately 5.0~6.0, because it will be not only expected to cause structural damage but also involved the characteristics of earthquake motions. Also, the recorded earthquake motion within this range are still very scarce in Korea. Thus, it is necessary to verify the model by the application of it to the mid-magnitude (approximately 4.0~6.0) earthquakes actually recorded in domestic or foreign area. The purpose of the paper is to generate an artificial earthquake using the model of Yeh and Wen in the area with low seismicity.

  • PDF

Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation

  • Sun, C.;Nagarajaiah, S.;Dick, A.J.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.319-341
    • /
    • 2014
  • A family of smart tuned mass dampers (STMDs) with variable frequency and damping properties is analyzed under harmonic excitations and ground motions. Two types of STMDs are studied: one is realized by a semi-active independently variable stiffness (SAIVS) device and the other is realized by a pendulum with an adjustable length. Based on the feedback signal, the angle of the SAIVS device or the length of the pendulum is adjusted by using a servomotor such that the frequency of the STMD matches the dominant excitation frequency in real-time. Closed-form solutions are derived for the two types of STMDs under harmonic excitations and ground motions. Results indicate that a small damping ratio (zero damping is the best theoretically) and an appropriate mass ratio can produce significant reduction when compared to the case with no tuned mass damper. Experiments are conducted to verify the theoretical result of the smart pendulum TMD (SPTMD). Frequency tuning of the SPTMD is implemented through tracking and analyzing the signal of the excitation using a short time Fourier transformation (STFT) based control algorithm. It is found that the theoretical model can predict the structural responses well. Both the SAIVS STMD and the SPTMD can significantly attenuate the structural responses and outperform the conventional passive TMDs.

Contribution of local site-effect on the seismic response of suspension bridges to spatially varying ground motions

  • Adanur, Suleyman;Altunisik, Ahmet C.;Soyluk, Kurtulus;Dumanoglu, A. Aydin;Bayraktar, Alemdar
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1233-1251
    • /
    • 2016
  • In this paper, it is aimed to determine the stochastic response of a suspension bridge subjected to spatially varying ground motions considering the geometric nonlinearity. Bosphorus Suspension Bridge built in Turkey and connects Europe to Asia in Istanbul is selected as a numerical example. The spatial variability of the ground motion is considered with the incoherence, wave-passage and site-response effects. The importance of site-response effect which arises from the difference in the local soil conditions at different support points of the structure is also investigated. At the end of the study, mean of the maximum and variance response values obtained from the spatially varying ground motions are compared with those of the specialised cases of the ground motion model. It is seen that each component of the spatially varying ground motion model has important effects on the dynamic behaviour of the bridge. The response values obtained from the general excitation case, which also includes the site-response effect causes larger response values than those of the homogeneous soil condition cases. The variance values calculated for the general excitation case are dominated by dynamic component at the deck and Asian side tower. The response values obtained for the site-response effect alone are larger than the response values obtained for the incoherence and wave-passage effects, separately. It can be concluded that suspension bridges are sensitive to the spatial variability of ground motion. Therefore, the incoherence, the wave-passage and especially the site-response effects should be considered in the stochastic analysis of this type of engineering structures.