• Title/Summary/Keyword: Ground motion simulation

Search Result 197, Processing Time 0.022 seconds

Seismic performance enhancement of a PCI-girder bridge pier with shear panel damper plus gap: Numerical simulation

  • Andika M. Emilidardi;Ali Awaludin;Andreas Triwiyono;Angga F. Setiawan;Iman Satyarno;Alvin K. Santoso
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.69-82
    • /
    • 2024
  • In the conventional seismic design approach for a bridge pier, the function of the stopper, and shear key are to serve as mechanisms for unseating prevention devices that retain and transmit the lateral load to the pier under strong earthquakes. This frequently inflicts immense shear forces and bending moments concentrated at the plastic hinge zone. In this study, a shear panel damper plus gap (SPDG) is proposed as a low-cost alternative with high energy dissipation capacity to improve the seismic performance of the pier. Therefore, this study aimed to investigate the seismic performance of the pre-stressed concrete I girder (PCI-girder) bridge equipped with SPDG. The bridge structure was analyzed using nonlinear time history analysis with seven-scaled ground motion records using the guidelines of ASCE 7-10 standard. Consequently, the implementation of SPDG technology on the bridge system yielded a notable decrease in maximum displacement by 41.49% and a reduction in earthquake input energy by 51.05% in comparison to the traditional system. This indicates that the presence of SPDG was able to enhance the seismic performance of the existing conventional bridge structure, enabling an improvement from a collapse prevention (CP) level to an immediate occupancy (IO).

Effectiveness of rocking walls system in seismic retrofit of vertically irregular RC buildings

  • Tadeh Zirakian;Omid Parvizi;Mojtaba Gorji Azandariani;David Boyajian
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.543-555
    • /
    • 2024
  • This study examines the seismic vulnerability of vertically irregular reinforced concrete (RC) frame buildings, focusing on the effectiveness of retrofitting techniques such as rocking walls (RWs) in mitigating soft story mechanisms. Utilizing a seven-story residential apartment as a prototype in a high-seismicity urban area, this research performs detailed nonlinear simulations to evaluate both regular and irregular structures, both before and after retrofitting. Pushover and nonlinear time history analyses were conducted using OpenSees software, with a suite of nine ground motion records to capture diverse seismic scenarios. The findings indicate that retrofitting with RWs significantly improves seismic performance: for instance, roof displacements at the Collapse Prevention (CP) level decreased by up to 23% in the irregular structure with retrofitting compared to its non-retrofitted counterpart. Additionally, interstory drift ratios were more uniform post-retrofit, with Drift Concentration Factor (DCF) values approaching 1.0 across all performance levels, reflecting reduced variability in seismic response. The global ductility of the retrofitted buildings improved, with displacement ductility ratios increasing by up to 29%. These results underscore the effectiveness of RWs in enhancing global ductility, mitigating soft story failures, and providing a more predictable deformation pattern during seismic events. The study thus provides valuable insights into the robustness and cost-effectiveness of using rocking walls for retrofitting irregular RC buildings.

PASEM을 이용한 KSR-III Nose Fairing 분리운동 예측

  • Ok, Ho-Nam;Kim, In-Sun;Ra, Sung-Ho;Kim, Seong-Lyong;Oh, Beom-Suk
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.171-181
    • /
    • 2003
  • The nose fairings of KSR-III are designed to be separated from the rocket by explosive force at the mission altitude to expose the payload. Adequate amount of separation force should be imposed to allow safe separation without collision between the fairings and the rocket, and the separation device was designed for the separation at very high altitude where almost no air load was expected. As the development of KSR-III goes on, several design changes have made and lower separation altitude of 45km is expected as a result. Under these circumstances, it is required to determine if the nose fairings can be separated without collision with much severer air load than for the design condition. In this study, the 6-DOF motion analysis program, PASEM, which was developed to predict the strap-on booster separation, is modified to simulate the pivotal motion of the fairings at early stages of separation. The accuracy of pivot motion simulation is validated by comparison with the results of ground test and the accurate separation conditions are deduced from it. Trajectory simulations are performed to see if separation without collision is possible with varying angle of attack, direction of gravity, and the effect of gust. It is also found that reducing the separation angle of the clamshell hinge from 60 degrees to 40 degrees can enhance separation safety and separation at lower altitude of 40km can be done without collision.

  • PDF

Horizontal Behavior Characteristics of Umbrella-Type Micropile Applied in Sandy Soil Subjected to Seismic Motion (사질토 지반에 설치된 우산형 마이크로파일의 지진 시 수평거동 특성)

  • Kim, Soo-Bong;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.7
    • /
    • pp.5-16
    • /
    • 2020
  • Currently, the seismic design standards have been strengthened due to the occurrence of the Gyeongju and Pohang earthquake, and seismic performance evaluation of existing facilities is being conducted. It aims to secure a seismic performance effect during earthquakes by improving the micro-pile method, which can be constructed in limited confined places while minimizing damage to existing facilities. The improvement method is to construct all the piles in the square-tray-type plate on the top of the pile by constructing the slope pile in the form of an umbrella around the vertical pile, the main pillar. In this paper, the numerical analysis was performed to analyze the horizontal displacement behavior of an umbrella-type micropile for various real-measurement seismic waves in sandy soil. As a result of numerical analysis, the softer the ground, the better the effect of horizontal resistance of umbrella-type micropile. The horizontal displacement reduction effect was pronounced when the embedded depth was 15 m or more at the same ground strength, and it was found to be effective in earthquakes if it was settled on the ground with an N value of 30 or more. The embedded depth and horizontal displacement suppression effect of the micropile was proportional. Generally, the weaker the ground, the greater the displacement suppression effect. Umbrella-type micropile had a composite resistance effect in which the vertical pile resists the moment and inclined pile resists the axial force.

An Atmospheric Numerical Simulation for Production of High Resolution Wind Map on Land and A Estimation of Strong Wind on the ground (고해상도 육상바람지도 구축을 위한 기상장 수치모의 및 지상강풍 추정)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Park, Jong-Kil;Kim, Hyun-Goo;Kim, Dong-Hyuk;Choi, Hyo-Jin;Kim, Min-Jeong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.145-149
    • /
    • 2009
  • High-resolution atmospheric numerical system was set up to simulate the motion of the atmosphere and to produce the wind map on land. The results of several simulations were improved compare to the past system, because of using the fine geographical data, such as terrain height and land-use data, and the meteorological data assimilation. To estimate surface maximum wind speed when a typhoon is expected to strike the Korea peninsula, wind information at the upper level atmosphere was applied. Using 700hPa data, wind speed at the height of 300m was estimated, and surface wind speed was estimated finally considering surface roughness length. This study used formula from other countries and estimated RMW but RMW estimation formula apt to Korea should be developed for future.

  • PDF

Estimation of Spectrum Decay Parameter χ and Stochastic Prediction of Strong Ground Motions in Southeastern Korea (한반도 남동부에서 부지효과를 고려한 스펙트럼 감쇠상수 χ 추정 및 강지진동의 추계학적 모사)

  • 조남대;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.59-70
    • /
    • 2003
  • We estimated the spectrum decay parameter $\chi$ and the stress parameter ($\Delta$$\sigma$) in southeastern Korea. Especially, we propose a procedure to compute site-independent $\chi$$_{q}$ and dependent $\chi$$_{s}$ values, separately, This procedure is to use the coda normalization method for the computation of site independent Q or corresponding $\chi$$_{q}$ value as the first step followed by the next step, the computation of $\chi$$_{s}$ values for each site using the given $\chi$$_{q}$ value evaluated at the first step, For the estimation of stress parameter, we used seismic data monitored from three earthquakes occurred near Gyeongju in 1999 with the method of Jo and Baag, In addition, we simulated strong ground motion using the $\chi$ value and the stress parameter, In this case, we calculated the $\chi$ value with conventional method. The $\chi$ value of 0.016+0.000157R and the stress parameter of 92-bar was applied to the stochastic simulation, At last, we derived seismic attenuation equation using results of the stochastic prediction, and compared these results with some others reported previously.ported previously.

Development of 3D Dynamic Numerical Simulation Method on a Soil-Pile System (지반-말뚝 시스템에 대한 3차원 동적 수치 모델링 기법 개발)

  • Kim, Seong-Hwan;Na, Seon-Hong;Han, Jin-Tae;Kim, Sung-Ryul;Sun, Chang-Guk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.85-92
    • /
    • 2011
  • The dynamic behavior of piles becomes very complex due to soil-pile dynamic interaction, soil non-linearity, resonance phenomena of soil-pile system and so on. Therefore, the proper numerical simulation of the pile behavior needs much effort and calculation time. In this research, a new modeling method, which can be applied to the conventional finite difference analysis program FLAC 3D, was developed to reduce the calculation time. The soil domain in this method is divided into a near-field region and a far-field region, which is not influenced by the soil-pile dynamic interaction. Then, the ground motion of the far-field is applied to the boundaries of the near-field instead of modeling the far-field region as finite meshes. In addition, the soil non-linearity behavior is modeled by using the hysteretic damping model, which determines the soil tangent modulus as a function of shear strain and the interface element was applied to simulate the separation and slip between the soil and pile. The proposed method reduced the calculation time by as much as one third compared with a usual modeling method and maintained the accuracy of the calculated results. The calculated results by the proposed method showed a good agreement with the prototype pile behavior, which was obtained by applying a similitude law to the 1-g shaking table test results.

Seismic Response Control of Arch Structures using Semi-active TMD (준능동 TMD를 이용한 아치구조물의 지진응답제어)

  • Kang, Joo-Won;Kim, Gee-Cheol;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, the possibility of seismic response control of semi-active tuned mass damper (TMD) for spatial structures has been investigated. To this end, an arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. A TMD and semi-active TMD were applied to the example arch structure and the seismic control performance of them were evaluated based on the numerical simulation. In order to regulate the damping force of the semi-active TMD, groundhook control algorithm, which is widely used for semi-active control, was used. El Centro (1940) and Northridge (1994) earthquakes and harmonic ground motion were used for performance evaluation of passive TMD and semi-active TMD. Based on the analytical results, the passive TMD could effectively reduce the seismic responses of the arch structure and it has been shown that the semi-active TMD more effectively decreased the dynamic responses of the arch structure compared to the passive TMD with respect to all the excitations used in this study.

  • PDF

Application of Smart Base Isolation System for Seismic Response Control of an Arch Structure (아치구조물의 지진응답제어를 위한 스마트 면진시스템의 적용)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2011
  • Base isolation system is widely used for reduction of dynamic responses of structures subjected to seismic load. Recently, research on a smart base isolation system that can effectively reduce dynamic responses of the isolated structure without accompanying increases in base drifts has been actively conducted. In this study, a smart base isolation system was applied to an arch structure subjected to seismic excitation and its control performance for reduction of seismic responses was evaluated. In order to make a smart base isolation system, 4kN MR dampers and low damping elastomeric bearings were used. Seismic response control performance of the proposed smart base isolation system was compared to that of the optimally designed lead-rubber bearing(LRB) isolation system. To this end, an artificial ground motion developed based on KBC2009 design response spectrum was used as a seismic excitation. Fuzzy control algorithm was used to control MR damper in the smart base isolation system and multi-objective genetic algorithm was employed to optimize the fuzzy controller. Based on numerical simulation results, it has been shown that the smart base isolation system can drastically reduce base drifts and seismic responses of the example arch structure in comparison with LRB isolation system.

Development of Long-Range Atmospheric Dispersion Model against a Nuclear Accident (원전 사고를 대비한 장거리 대기 확산모델 개발)

  • Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • The three-dimensional long-range dispersion model has been developed to understand the characteristics of the transport and diffusion of radioactive materials released into atmosphere. The model is designed to compute air concentration and ground deposition at distances up to some thousands of kilometers from the source point in horizontal direction. The vertical turbulent motion is considered separately within the mixing layer and above the mixing layer. The test simulation was performed In the area of Northeast Asia. The release point was assumed in the east part of China. The calculated concentration distributions art mainly advected toward the southeast part of release point by the wind fields. The developed model will be used to estimate the radiological consequences against a nuclear accident. The model will be supplemented by the comparative study using the data of the long-range field experiments.