• 제목/요약/키워드: Ground heat

검색결과 901건 처리시간 0.034초

냉난방 가동 모사에 따른 콘크리트 에너지파일의 열응력 해석에 대한 연구 (Study on Thermal Stress Occurred in Concrete Energy Pile During Heating and Cooling Buildings)

  • 성치훈;박상우;김병연;정경식;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제11권2호
    • /
    • pp.12-18
    • /
    • 2015
  • The energy pile, used for both structural foundations and heat exchangers, brings about heat exchange with the ground formation by circulating a working fluid for heating and cooling buildings. As heat exchange occurs in the energy pile, thermal stress and strain is generated in the pile body and surrounding ground formation. In order to investigate the thermo-mechanical behavior of an energy pile, a comprehensive experimental program was conducted, monitoring the thermal stress of a cast-in place energy pile equipped with five pairs of U-type heat exchanger pipes. The heating and cooling simulation both continued for 30 days. The thermal strain in the longitudinal direction of the energy pile was monitored for a 15 operation days and another 15 days monitoring followed, without the application of heat exchange. In addition, a finite element model was developed to simulate the thermo-mechanical behavior of the energy pile. A non-linear contact model was adopted to interpret the interaction at the pile-soil interface, and thermal-induced structure mechanics was considered to handle the thermo-mechanical coupled multi-field problem.

지열 성능해석 시뮬레이션에 기반한 최적 설계 수법 개발 (Development of Optimum Design Method for Geothermal Performance based on Energy Simulation)

  • 문형진;김홍교;남유진
    • 대한건축학회논문집:구조계
    • /
    • 제35권3호
    • /
    • pp.43-48
    • /
    • 2019
  • Since the revision of the Rationalization of Energy Use Law, the spread of new and renewable energy in buildings has been promoted. In addition, the production of electric power and thermal energy is an important issue in the change of energy paradigm centered on the use of distributed energy. Among them, geothermal energy is attracting attention as a high-performance energy-saving technology capable of coping with heating / cooling and hot water load by utilizing the constant temperature zone of the earth. However, there is a disadvantage that the initial investment cost is high as a method of calculating the capacity of a geothermal facility by calculating the maximum load. The disadvantages of these disadvantages are that the geothermal energy supply is getting stagnant and the design of the geothermal system needs to be supplemented. In this study, optimization design of geothermal system was carried out using optimization tool. As a result of the optimization, the ground heat exchanger decreased by 30.8%, the capacity of the heat pump decreased by 7.7%, and the capacity of the heat storage tank decreased by about 40%. The simulation was performed by applying the optimized value to the program and confirmed that it corresponds to the load of the building. We also confirmed that all of the constraints used in the optimization design were satisfied. The initial investment cost of the optimized geothermal system is about 18.6% lower than the initial investment cost.

Hypersonic Aero-Heating Ground-Test Simulation Technique

  • Li, Ruiqu;Yao, Dapeng;Sha, Xinguo;Gong, Jian
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.50-53
    • /
    • 2015
  • It would encounter some complicated flow fields, such as transition, separation, reattachment and disturbances, in the hypersonic flight. Thus, it is difficult to theoretically analyze the hypersonic aerothermodynamics effects, so that the ground-test simulation is thought of as one of the most important methods to improve the understanding level of the hypersonic aerothermodynamics. However, the aero-heating tests could not simulate all aerodynamics and geometry parameters in the real flight due to the differences between the experimental environments supplied by the ground facilities and the flight, so that the feasible technique for the ground-test simulation of the hypersonic aerothermodynamics effects is required to be advanced. The key parameters that are especially required to simulate for aero-heating tests are analyzed and one detailed approach is suggested to perform the experimental investigation on the hypersonic aero-heating effects in the ground facilities in this paper, and the tests are performed in the FD-20 gun tunnel of CAAA (China Academy of Aerospace Aerodynamics) to give out the data which could be used to confirm the equation from the theoretical analysis.

현장 열응답 시험을 통한 에너지파일의 열교환파이프 배열 방식에 따른 성능 비교 (Performance-based comparison of energy pile of various heat exchange pipe arrangement by in-situ thermal response test)

  • 민선홍;고형선;유재현;정경식;이영진;최항석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.196.1-196.1
    • /
    • 2011
  • In this study, a test bed was constructed in order to evaluate thermal efficiency of the energy pile which carries out combined roles of a structural foundation and of a heat exchanger. The energy pile in this study is designed as a large-diameter drilled shaft equipped with the heat exchange pipes which configures a W-shape and an S-shape. The drilled shaft reached to the depth of 60 m whilst the heat exchange pipes were installed to about 30 m deep from the ground surface. The W-shaped and S-shaped heat exchange pipes were installed in the opposite sections of the same drilled shaft. In-situ thermal response tests were performed for both the shapes of heat exchange pipes. To avoid underestimating the thermal performance due to hydration heat of concrete inside the drilled shaft, the in-situ thermal response tests for the energy pile were performed after four weeks since the installation of the energy pile.

  • PDF

지하수 수위가 개방형 지열시스템 성능에 미치는 영향에 관한 연구 (A Study of the Influence of Groundwater Level on the System Performance of Open Loop Geothermal System)

  • 김진상;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권3호
    • /
    • pp.1-10
    • /
    • 2013
  • Open loop geothermal heat pumps have great potential where the groundwater resources are sufficient. Performance of open loop geothermal heat pump systems is considered higher than that of ground source heat pumps. Head and power calculation of submersible pumps, heat pump units, and piping are numerically based on regression data. Results shows that the system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system COPs. The highest achievable cooling system COPs become 6.34, 6.12, and 5.95 as the groundwater levels are 5m, 15m, and 25m. The highest heating system COPs also become 4.59, 4.37, and 4.20. Groundwater level and submersible pump selection greatly influence the system performance of open loop geothermal heat pumps. It needs to be analysed during the design process of open loop geothermal heat pump system, possibly with analysis tools that include wide range of pump product data.

그라우트 재료에 따른 지중 열교환기의 열전도도에 관한 실험적 연구 (Thermal Conductivity Measurement of Grouting Materials for Geothermal Heat Exchanger)

  • 임효재;공형진;송윤석;박성구
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.364-369
    • /
    • 2005
  • An experimental study was conducted on the thermal conductivity of various grouting materials for geothermal heat exchanger which is used as a heat sink or source in the heat pump system. The grouting of the vertical heat exchanger is important for environmental and heat transfer reasons and is generally accomplished by the placement of a low permeability material into the annular space between the borehole wall and the pipes suspended in the borehole. In this study, a lab scale test apparatus was made and measured the thermal conductivity of four grouting materials. As a result, the temperature rising tendency was similar among them, but the increasing rate was different. Thus the thermal conductivity showed a maximum difference of $27\%$ among grouting materials.

Experimental exergy assessment of ground source heat pump system

  • Ahmad, Saif Nawaz;Prakasha, Om
    • Advances in Energy Research
    • /
    • 제6권2호
    • /
    • pp.161-172
    • /
    • 2019
  • The principal intention of this experimental work is to confer upon the exergy study of GSHP associated with horizontal earth heat exchanger for space heating. The exergy analysis recognizes the assessment of the tendency of various energy flows and quantifies the extensive impression of inefficiencies in the system and its components. Consequently, this study intends to provide the enlightenment for well interpretation of exergy concept for GSHP. This GSHP system is composed of heat pump cycle, earth heat exchanger cycle and fan coil cycle. All the required data were measured and recorded when the experimental set up run at steady state and average of the measured data were used for exergy investigation purpose. In this study the rate at which exergy destructed at all the subsystems and system has been estimated using the analytical expression. The overall rational exergetic efficiency of the GSHP system was evaluated for estimating its effectiveness. Hence, we draw the exergy flow diagram by using the various calculated results. The result shows that in the whole system the maximum exergy destruction rate component was compressor and minimum exergy flow component was earth heat exchanger. Consequently, compressor and earth heat exchanger need to be pay more attention.

유한요소법을 이용한 유기압 현수장치의 열전달 해석 (Heat Transfer Analysis of Hydropneumatic Suspension Unit By Finite Element Method)

  • 배징도;조진래;이홍우;송정인;이진규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.531-536
    • /
    • 2004
  • In-arm type hydropeumatic suspension unit(ISU) is an equipment of armed tracked vehicle to absorb impact load and vibration from the irregular ground. During the operation of ISU, main piston moves forward and backward and oil flowing through damper transmits the external impact load to floating piston. Heat is generated in ISU by the oil pressure drop through the damper orifice and the friction between cylinder wall and two pistons. On the other hand, internal heat dissipatis outside via heat convection. Occurrence of high temperature can deteriorate durability of major components and basic function of ISU. And, it can cause fatal problem in the ISU life time and the sealing performance of piston rings. As well, the spring constant change of nitrogen gas that is caused by the temperature rise exerts the negative effect to the vehicle stability. Therefore, in this paper, we analyze the heat transfer analysis of the entire ISU unit, by finite element method, with the outside flow velocities 8m/s and 10m/s.

  • PDF

동특성 시뮬레이션을 이용한 공기, 지열 및 지하 저수조 열원 소형 열펌프의 경제성 분석 (Economical Analysis of a Small Capacity Heat Pump utilizing Heat Sources of Air, Geothermal and Underground Water Tank using Dynamic Simulation)

  • 양철호;김영일;정광섭
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권4호
    • /
    • pp.17-23
    • /
    • 2012
  • Due to reinforcement of international environment regulation and high oil prices, interest in renewable energy is growing. Countries participating in UNFCCC are continuously putting efforts in reducing greenhouse gas after enforcing Kyoto Protocol into effect on Feb, 2005. Energy used in buildings, which relies heavily on fossil fuel accounts for about 24% of total energy consumption. In this study, air, geothermal and water source heat pump systems for an 322 $m^2$ auditorium in an office building is simulated using TRNSYS version 17 for comparing energy consumptions. The results show that energy consumptions of air, geothermal and water source heat pumps are 14,485, 10,249, and 10,405 kWh, respectively. Annual equal payments which consider both initial and running costs become 5,734,521, 6,403,257 and 5,596,058 Won. Thus, water source heat pump is the best economical choice.