• Title/Summary/Keyword: Ground heat

Search Result 896, Processing Time 0.023 seconds

Measurement of the Surface Heat Transfer Coefficients for Freezing Time Prediction of Foodstuffs (식품의 동결시간 예측을 위한 표면열전달계수 측정)

  • Jeong, Jin-Woong;Kong, Jai-Yul;Kim, Min-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.735-741
    • /
    • 1989
  • For the accurate prediction of freezing time, probably the most difficult factor to measure and major error source is the surface heat transfer coefficient. In this work, surface heat transfer coefficient were determined for still air freezing and immersion freezing methods by theory of the transient temperature method and confirmed by using a modification of plank's equation to predict the freezing time of ground lean beef. The results showed the cooling rate of immersion freezing was about 11 times faster than that of still air freezing method. A comparison of surface heat transfer coefficient of copper plate and ground lean beef resulted an difference of 25-30% because the food sample surface is not smooth as copper plate. Also, when h-values measured by ground lean beef were applicated to modified model, the accuracy of its results is very high as difference of about 8%.

  • PDF

Application analysis to a shared apartment house of heat storage type GSHP system with dual storage tank (이중 축열조를 갖는 축열식 지열원 히트펌프시스템의 노인공동주택 적용 분석연구)

  • Park, Jong-Woo;Lee, Sang-Hoon;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.27-32
    • /
    • 2008
  • The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) which are installed at the same building in the shared an apartment house. Cost items, such as initial cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,050,910,000won) is more profitable than GSHP by 68.9% initial cost. And SPP appeared 3.0 year overcome the different initial cost by different annual energy cost.

  • PDF

Development of an Electric Circuit Transient Analogy Model in a Vertical Closed Loop Ground Heat Exchanger (수직밀폐형 지중열교환기의 회로 과도해석 상사모델 개발)

  • Kim, Won-Uk;Park, Hong-Hee;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.306-314
    • /
    • 2012
  • Several numerical or analytical models have been proposed to analyze the thermal response of vertical ground heat exchangers (GHEX). However, most models are valid only after several hours of operation since they neglect the heat capacity of the borehole. Recently, the short time response of the GHEX became important in system simulation to improve efficiency. In this paper, a simple new method to evaluate the short time response of the GHEX by using an analogy model of electric circuit transient analysis was presented. The new transient heat exchanger model adopting the concept of thermal capacitance of the borehole as well as the steady-state thermal resistance showed the transient thermal resistance of the borehole. The model was validated by in-situ thermal response test and then compared with the DST model of the TRNSYS program.

Daily Heating Performance of a Ground Source Multi-heat Pump at Heating Mode (지열원 물대공기 멀티 히트펌프의 일일 난방 운전 특성에 관한 실증 연구)

  • Choi, Jong-Min;Lim, Hyo-Jae;Kang, Shin-Hyung;Moon, Je-Myung;Kim, Rock-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.527-535
    • /
    • 2009
  • The aim of this study is to investigate the daily heating performance of ground source multi-heat pump system with vertical single U-tube type GLHXs, which were installed in a school building located in Cheonan. Daily average COP of heat pump unit on Jan. 12th, 2009 at heating mode was lower than it on Nov. 10th, 2008 and Dec. 15th, 2008, because of lower EWT of the outdoor heat exchanger and relatively smaller size of condenser and evaporator. But, the system COP on the former was higher than it on the latter because ground loop circulating pump was operated in rated speed. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load change have to be developed in order to enhance the performance of the system COP.

Evaluation of Deployment Barriers to Solar Thermal and Ground Source Heat Pump for Buildings (건물용 태양열과 지열의 보급 장벽 평가)

  • Ilhyun Cho;Jaeseok Lee
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.61-69
    • /
    • 2024
  • This study investigates the barriers to the deployment of solar thermal and ground source heat pump (GSHP) from the perspective of consumers and businesses, as well as evaluates priorities for improving the barriers via expert AHP evaluation. From a consumer's perspective, the overall satisfaction with solar thermal is significantly lower than that with PV and needs to be improved at the installation and use stages. GSHP needs to be improved at the prior-information search stage. From a business perspective, the non-distinction between heat and electricity in mandatory installations in public buildings, the difficulty in assessing the value of heat, and high initial costs impede the deployment. Based on the result of AHP analysis, the priorities for improving the barriers to the wide utilization of solar thermal are evaluated in the order of economic feasibility, policy, acceptability, and technology, where high installation cost is shown to be the greatest barrier. Barriers for GSHP are evaluated in the order of policy, acceptability, economic feasibility, and technology, where policy means improvement is evaluated as the most important factor in promoting the deployment of GSHP.

Evaluation on Cooling Performance of Ground Source Heat Pump System Equipped with Steel-pipe Civil Structures (강관 토목구조물이 설치된 지열 히트펌프 시스템의 냉방 성능 평가)

  • Seokjae Lee;Jeonghun Yang;Hangseok Choi
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.14-22
    • /
    • 2023
  • Steel-pipe civil structures, including steel-pipe energy piles and cast-in-place piles (CIPs), utilize steel pipes as their primary reinforcements. These steel pipes facilitate the circulation of a working fluid through their annular crosssection, enabling heat exchange with the surrounding ground formation. In this study, the cooling performance of a ground source heat pump (GSHP) system that incorporated steel-pipe civil structures was investigated to assess their applicability. First of all, the thermal performance test was conducted with steel-pipe CIPs to evaluate the average heat exchange amount. Subsequently, a GSHP system was designed and implemented within an office container, considering the various types of steel-pipe civil structures. During the performance evaluation tests, parameters such as the coefficient of performance (COP) and entering water temperature (EWT) were closely monitored. The outcomes indicated an average COP of 3.74 for the GSHP system and the EWT remained relatively stable throughout the tests. Consequently, the GSPH system demonstrated its capability to consistently provide a sufficient heat source, even during periods of high cooling thermal demand, by utilzing the steel-pipe civil structures.

Analysis of Performance Changes in Ground source Heat Pump and Air Source Heat Pump According to Global Warming (지구온난화에 따른 지열히트펌프와 공기열히트펌프의 성능 변화 분석)

  • Jin Yeong Seo;Se Hyeon Ham;Dongchan Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.8-17
    • /
    • 2023
  • The air temperature is gradually increasing owing to global warming, especially in summer, therefore, the performance of an air source heat pump (ASHP) is expected to be decreased. Accordingly, the performance gap between the ASHP and ground source heat pump (GSHP) should be increased, however, the quantitative comparison has not been yet investigated. In this study, impact of global warming on the performance of the ASHP and GSHP is investigated based on the climate data for 1930, 1980, and 2030. The coefficient of performance (COP) as well as annual power consumption of the ASHP and GSHP are compared and analyzed. In the case of COP, the COP of GSHP hardly changes over the years owing to the constant ground temperature, while that of ASHP decreases by 3.7% for cooling and increases by 0.71% for heating. In the case of annual power consumption, the cooling and heating power consumption of GSHP increases by 12.69% and decreases by 15.58%, respectively, over the year owing to the changes in heating and cooling loads. As for the ASHP, the cooling and heating power consumption increases by 16.64% and decreases by 17.8%, respectively. For a more accurate comparison, power consumption ratio is introduced and shows that total annual power consumption of the GSHP to ASHP decreased from 68% in 1930 to 65% in 2030. Therefore, as global warming accelerates, the effect of reducing power consumption by using GSHP compared to ASHP is expected to be increasing.

Thermo-hydraulic Numerical Analysis for the Leakage of Buried District Heating Pipe (열수송관의 누수에 대한 열-수리적 수치해석)

  • Shin, Hosung;Hong, Seung-Seo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.17-26
    • /
    • 2022
  • Domestic district heating system needs safety management guidelines using the change of surface temperature to detect damages to buried heat pipes. This paper performed numerical analyses on the temperature change of ground surface due to the burial and leakage of heat pipes. Temperature difference between the ground surface above the buried heat pipes and the surrounding surface rises to a crescendo between 3 am and 8 am. It is more significant in winter rather than in summer. Low groundwater level magnifies the temperature increase of the ground surface by the heat pipe, which is smaller in the asphalt pavement than in the bare soil. Without leakage of the buried heat pipe, the temperature increment on the ground surface by the heat pipe is within 3.0℃ in the bare soil and 3.5℃ in the asphalt pavement. Leakage of the supply heat pipe in the bare soil increases the temperature on the ground surface gradually in the summer but rapidly in the winter. Asphalt pavement shows a lower increment and increasing rate of the temperature on the ground surface due to pipe leakage than bare soil surface. And leakage on both sides of the supply pipe takes 1-2 days for the temperature difference from the surrounding soil surface to reach 10℃.

An Experimental Study on the Ground Source Heat Pump System for Heating Economic Efficiency and Reduction Amount of $CO_2$ (지열 시스템의 난방 경제성 및 $CO_2$ 절감 실증 연구)

  • Nam, Leem-Woo;Paek, Gi-Dong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.25-30
    • /
    • 2007
  • The final energy consumption in the building sector in Korea represents almost 20% of the total energy consumption. Besides, Space heating and hot water generation in Korea are based on fossil fuels, with a serious environmental impact. This study describes thermal performance of heating demonstration system using close-loop ground source heat pump installed at Korean minjok leadership academy. The results of the experimental study, it retrieve the investment cost for 3years 8months and reduction amount of $CO_2$are 293,900 $kgCO_2$.

  • PDF

Estimation of the Heat Budget Parameter in the Atmospheric Boundary Layer considering the Characteristics of Soil Surface (지표면의 특성을 고려한 대기경계층내의 열수지 parameter 추정 -열수지 parameter를 이용한 중규모 순환의 수치예측-)

  • 이화운;정유근
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.727-738
    • /
    • 1996
  • An one dimensional atmosphere-canopy-soil interaction model is developed to estimate of the heat budget parameter in the atmospheric boundary layer. The canopy model is composed of the three balance equations of energy, temperature, moisture at ground surface and canopy layer with three independent variables of Tf(foliage temperature), Tg(ground temperature), and qg(ground specific humidity). The model was verilied by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HAPEX-MOBILHY experiment. Also we applied this model in two dimensional land-sea breeze circulation. According to the results of this study, surface characteristics considering canopy acted importantly upon the simulation of meso-scale circulation. The factors which used in the numerical experiment are as follows ; the change for a sort of soil(sand and peat), the change for shielding factor, and the change for a kind of vegetation.

  • PDF