• Title/Summary/Keyword: Ground forces

Search Result 537, Processing Time 0.025 seconds

Effect of Target Height on Ground reaction force factors during Taekwondo and Hapkido Dollyuchagi Motion (태권도와 합기도의 돌려차기시 타격 높이가 지면반력에 미치는 영향)

  • Yang, Chang-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.193-204
    • /
    • 2002
  • The purpose of this study was to investigate the effect of martial art type and target height on the ground reaction force factors during Dollyuchagi motion. Data were collected using force plate. Five Taekwondo players and five Hapkido players were tested during Dollyuchagi motion to three different target heights(0.8, 1.2, 1.6 m). After analysis of kinetics using force plate data, maximum vertical ground reaction force was 1.62~2.44 BW, and impulse was $0.66\sim1.01 BW{\cdot}s$. Even though there was no difference for maximum ground reaction forces and impulse between Hapkido and Taekwondo, as target height was higher, impulse increased. Anterior-posterior and vertical ground reaction forces at kicking foot take-off were greater with target height, although there was no difference for medio-lateral force with target height. At impact there was significant difference for anterior-posterior ground reaction force between Hapkido and Taekwondo players. Taekwondo players' force (range, -0.23~-0.26 BW) was greater than Hapkido players's force (range, -0.08~-0.14 BW).

A study on the ground reaction forces and plantar pressure variables in different safety shoes and applying insole during walking (안전화 형태와 Insole 착용 유무에 따른 보행동작시 하지부위에 대한 지면반발력과 압력분포 부하)

  • Kim, Jung-Jin;Choi, Sang-Bock;Cha, Sang-Eun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.2
    • /
    • pp.131-143
    • /
    • 2007
  • The purpose of this study was to compare the ground reaction forces and plantar pressure variables among three different safety shoes (Type 1: ergonomically designed and high quality shoes, 2: curved and cushioned safety hoes, and 3: regular safety shoes) and to find the effect of insole during walking. Ten healthy subjects were recruited for this study. The ground reaction force was measured using a 3 dimensional motion analysis system. Plantar pressures were measured Pedar Mobile foot pressure scan system. The ground reaction force variables were not significantly different among three different shoe types and insole conditions. After insertion insole, plantar pressure distributions were improved. These results suggest that the type 1 safety shoes was superior than other safety shoes in the statistics, and applying insole could be a possible method to prevent fatigue of lower extremity and musculoskeletal disorders. Further studies are needed to find the effect of ergonomically designed safety shoes design and insole on practical value prevention of musculoskeletal disorder, fatigue and satisfaction of workers.

Study on quasi-static crawling system using a four bar mechanism (4절 메카니즘을 이용한 준정적 포복 시스템에 관한 연구)

  • 전용호;송낙윤;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.924-927
    • /
    • 1996
  • In this work, we investigate the quasi-static crawling of the four-bar mechanism. Since the crawling of the mechanism is based on sliding of contact points of the mechanism with the ground, interaction forces and friction forces at contact points of the mechanism with the ground should be computed. For this purpuse, we introduce the concept of imaginary joints to find these forces. Therefore, we are able to treat the closed mechanism as a serial one. Also, sliding conditions of the mechanism in quasi-static equilibrium are examined. Lastly, the required torques for the mechanism to crawl with respect to various configurations of the mechanism but with a fixed ground friction are investigated.

  • PDF

Quasi-Static Crawling System Using a Four Bar Mechanism (4절 메커니즘을 이용한 준정적 포복 시스템)

  • Kim, Hae-Soo;Kim, Min-Gun;Yim, Nam-Sik;Kim, Wheekuk;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.226-232
    • /
    • 2002
  • In this work, the quasi-static crawling of the four-bar mechanism is investigated. Since the crawling of the mechanism is based on sliding of contact points of the mechanism with the ground, interaction forces and friction forces at contact points of the mechanism with the ground should be computed. For this purpose, we introduce the concept of imaginary joints to find these forces and treat the closed mechanism as a serial one. Lastly, the required torques for the mechanism to crawl with respect to various configurations of the mechanism on a flat ground with uniform friction coefficient, based on sliding conditions of the mechanism in quasi-static equilibrium, are investigated.

The Study on 3-Axes Acceleration Impact of Lower Limbs Joint during Gait (보행 시 하지 관절의 3축 충격가속도에 관한 연구)

  • Oh, Yeon-Ju;Lee, Chang-Min
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.33-39
    • /
    • 2009
  • Impact force to a body during walking depends on walking speed, walking steps, the condition of the floors and shoes, and weight. The ground reaction force and the foot pressure can be measured instantaneous force easily, but it's difficult to find out the amount of transferring forces to the body. On the other hand, the acceleration has an advantage for analyzing the amount of transferring forces. However, most of studies about impact forces to the ground reaction during exercise have been limited to analyze instantaneous forces. The important thing is to evaluate characters and the amount of the impact force rather than the magnitude. Therefore, this study analyze the impact force using 3 axis acceleration in three dimensions (x; anterior-posterior, y; left-right and z; longitudinal axis) using three axis acceleration. As working speed increased, impact forces increased significantly. Impact forces on x axis and z axis are higher at lower limb than that of upper limb. However, impact force at the knee is higher than that of other parts on y axis regardless of walking speed significantly. In addition, relations of the impact forces as interaction of experiment factors as well as effect of each factor are analyzed.

Long-term monitoring of ground anchor tensile forces by FBG sensors embedded tendon

  • Sung, Hyun-Jong;Do, Tan Manh;Kim, Jae-Min;Kim, Young-Sang
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, there has been significant interest in structural health monitoring for civil engineering applications. In this research, a specially designed tendon, proposed by embedding FBG sensors into the center king cable of a 7-wire strand tendon, was applied for long-term health monitoring of tensile forces on a ground anchor. To make temperature independent sensors, the effective temperature compensation of FBG sensors must be considered. The temperature sensitivity coefficient ${\beta}^{\prime}$ of the FBG sensors embedded tendon was successfully determined to be $2.0{\times}10^{-5}^{\circ}C^{-1}$ through calibrated tests in both a model rock body and a laboratory heat chamber. Furthermore, the obtained result for ${\beta}^{\prime}$ was formally verified through the ground temperature measurement test, expectedly. As a result, the ground temperature measured by a thermometer showed good agreement compared to that measured by the proposed FBG sensor, which was calibrated considering to the temperature sensitivity coefficient ${\beta}^{\prime}$. Finally, four prototype ground anchors including two tension ground anchors and two compression ground anchors made by replacing a tendon with the proposed smart tendon were installed into an actual slope at the Yeosu site. Tensile forces, after temperature compensation was taken into account using the verified temperature sensitivity coefficient ${\beta}^{\prime}$ and ground temperature obtained from the Korean Meteorological Administration (KMA) have been monitored for over one year, and the results were very consistent to those measured from the load cell, interestingly.

Computation of Ground Reaction Forces During Gait using Kinematic Data (보행의 운동학적 데이터를 이용한 지면반발력 계산)

  • Song, Sung-Jae;Kim, Sei-Yoon;Kim, Young-Tae;Lee, Sang-Don
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • The purpose of this study is to compute the ground reaction forces during gait in the absence of force plates. The difficulties in using force plates for hemiparetic patients inspired us to initiate this study. Level-walking experiments were performed using a three-dimensional motion analysis system with synchronized force plates. Kinematic data were obtained from the three-dimensional trajectories of reflective markers. Gait events were also detected from the kinematic data. The human body was modeled as 13 rigid segments. The mass and the center of mass of each segment were determined from anthropometric data. Vertical ground-reaction forces obtained from the kinematic data were in good agreement with those obtained using the force plate. The computed and measured values of anterior and lateral ground reaction showed similar tendencies. The computation results can be used as the basic data for inverse dynamic analysis.

Investigation of divergence tunnel excavation according to horizontal offsets between tunnels

  • Hong, Soon-Kyo;Oh, Dong-Wook;Kong, Suk-Min;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.111-122
    • /
    • 2020
  • In most cases in urban areas, construction of divergence tunnel should take into account proximity to existing tunnel in operation. This inevitably leads to deformation of adjacent structures and surrounding ground. Preceding researches mainly dealt with reinforcing of the diverging section for the stability including the pillar. This has limitations in investigating the interactive effects between existing structures and surrounding ground due to the excavation of the divergence tunnel. In this study, the complex interactive behavior of pile, the operating tunnel, and the surrounding ground according to horizontal offsets between the two adjacent tunnels was quantitatively analyzed based on conditions diverged from operating tunnel in urban areas. The effects on ground structures confirmed by analyzing the ground surface settlements, pile settlements, and the axial forces of the pile. The axial forces of lining in operating tunnel investigated to estimate their impact on existing tunnel. In addition, in order to identify the deformation of the surrounding ground, the close range photogrammetry applied to the laboratory model test for confirming the underground displacements. Two-dimensional finite element numerical analysis was also performed and compared with the results. It identified that the impact of excavating a divergence tunnel decreased as the horizontal offset increased. In particular, when the horizontal offset was larger than 1.0D (D is the diameter of operating tunnel), the impact on existing structures further reduced and the deformation of surrounding ground was concentrated at the top of the divergence tunnel.

Investigation on Interaction between Tunneling and Groundwater (터널시공과 지하수의 상호작용 고찰)

  • Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.415-424
    • /
    • 2004
  • This paper presents the effect of groundwater on tunneling performance. The interaction between the tunneling and groundwater was examined using a 3D stress-pore pressure coupled finite-element analysis, The results of the 3D coupled analysis were then compared with those of a total stress analysis. Examined items included pore pressures around lining and lining forces. Also examined include face displacements and ground surface movements, The results indicated that the interaction between the tunneling and ground water significantly increases the lining forces and ground deformations, and that the effect of ground water on tunneling can only be captured through a fully coupled analysis, Implementations of the findings from this study arc discussed in great detail.

  • PDF

Comparison of vertical ground reaction forces between female elderly and young adults during sit-to-stand and gait using the Nintendo Wii Balance Board

  • Lim, Ji Young;Yi, Yoonsil;Jung, Sang Woo;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.4
    • /
    • pp.179-185
    • /
    • 2018
  • Objective: The purpose of this study was to analyze and compare vertical ground reaction forces during sit to stand (STS) and gait between female elderly and young individuals using the Wii Balance Board (WBB). Design: Cross-sectional study. Methods: Fifty-one female elderly people (age: $75.18{\pm}4.60years$), and 13 young people (age: $29.85{\pm}3.69years$) performed the five times STS test and gait respectively on the WBB. We analyzed time (s), vertical peak (%), integral summation (Int_SUM, %), and counter variables (%) in STS and 1st peak (body weight, BW%), 2nd peak (BW%), peak minimum (BW%), time (second), center of pressure (COP) path length (mm), and Int_SUM (BW%) in gait. The independent t-test was used to assess for differences in STS, gait ability, and general characteristics between the female elderly group and young adults group. With the first and last trials excluded, the mean value was obtained from the middle three of the five trials. Results: During STS, Int_SUM and time of young adults were significantly less than of the female elderly subjects. There were no significant differences in peak and counter variables. In gait, all variables (1st peak, 2nd peak, min, time, COP_path, and Int_SUM) showed significant differences between groups (p<0.05). This study demonstrated that the validity of vertical ground reaction forces occurring during STS and gait was significant in female elderly and young adults. Conclusions: Based on the measurement of vertical ground reaction forces in STS and gait using the WBB, it is possible to clinically improve the quality of geriatric physical therapy. Further studies are necessary to examine concurrent validity of elderly patients who have undergone total hip or knee replacement.