• Title/Summary/Keyword: Ground Truth

Search Result 297, Processing Time 0.028 seconds

Establishment and Application of Computer-Assisted Environmental Information System for Land Use Zoning and Environmental Analysis of Natural Park (자연공원의 환경분석 및 용도지역설정을 위한 전산환경정보체계의 수립과 적용)

  • Lee, Myung-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.1
    • /
    • pp.39-55
    • /
    • 1993
  • The importance of urban and regional natural park increases because of the needs for preserving the natural resources and providing with natural recreation space in nature. This planning of natural park management should be established based on the research of the various natural resources in the park. But for the lack of effective data synthesizing methods and concepts, only some restricted factors for zoning plan are considered even though GIS computer system for large complex simulation is used. Therefore, in this study three ecological zoning models such as Basic Factor Model (BFM), Visual Landscape Model (VLM) and Comprehensive Ecological Model (CEM) are proposed and applied to Byounsan Peninsula Nature Park(BPNP) for comparison with the current natural park zoning. The BFM has three components -elevation, slope and vegetation. The VLM has applied with six components -elevation, slope, vegetation, road type, and the visual distance. Finally the CEM's modelling factors have included all of BFM, VLM components are added with the land use type, nature and historic resource factors. The zoning concept of BPNP was based on "Minimization" focused on the specific factors. But introduced modelling concept is "Optimization" based on the total ecological environment. So the result of the modelling has larger area for preservation and development zoning compared with the current zoning whose characteristics are ambiguous which allows the environmental destruction. The future study issues will be the determination of the weighting factor, component reconsideration based on the ground truth data and the agriculture residential area zoning.

  • PDF

A High-Quality Occlusion Filling Method Using Image Inpainting (영상 인페인팅을 이용한 고품질의 가려짐 영역 보간 방법)

  • Kim, Yong-Jin;Lee, Sang-Hwa;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.3-13
    • /
    • 2010
  • In this paper, we propose a method for filling out the occlusions in generating multi-view images from one source image and its ground-truth depth image. The method is based on image inpainting and layered interpolation. The source image is first divided into several layers using depth information. The occlusions are interpolated separately in every layered image using the image inpainting algorithm. Finally, the interpolated layered images are combined to obtain different viewpoint images. Interpolating occlusions with depth-correlated texture information that is contained to each layer makes it possible to obtain more detailed and accurate results than previous methods. The effectiveness of the proposed method is shown through experimental results.

Performance Improvement of the Statistical Information based Traffic Identification System (통계 정보 기반 트래픽 분석 방법론의 성능 향상)

  • An, Hyun Min;Ham, Jae Hyun;Kim, Myung Sup
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.8
    • /
    • pp.335-342
    • /
    • 2013
  • Nowadays, the traffic type and behavior are extremely diverse due to the growth of network speed and the appearance of various services on Internet. For efficient network operation and management, the importance of application-level traffic identification is more and more increasing in the area of traffic analysis. In recent years traffic identification methodology using statistical features of traffic flow has been broadly studied. However, there are several problems to be considered in the identification methodology base on statistical features of flow to improve the analysis accuracy. In this paper, we recognize these problems by analyzing the ground-truth traffic and propose the solution of these problems. The four problems considered in this paper are the distance measurement of features, the selection of the representative value of features, the abnormal behavior of TCP sessions, and the weight assignment to the feature. The proposed solutions were verified by showing the performance improvement through experiments in campus network.

Remote Sensing Information Models for Sediment and Soil

  • Ma, Ainai
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.739-744
    • /
    • 2002
  • Recently we have discovered that sediments should be separated from lithosphere, and soil should be separated from biosphere, both sediment and soil will be mixed sediments-soil-sphere (Seso-sphere), which is using particulate mechanics to be solved. Erosion and sediment both are moving by particulate matter with water or wind. But ancient sediments will be erosion same to soil. Nowadays, real soil has already reduced much more. Many places have only remained sediments that have ploughed artificial farming layer. Thus it means sediments-soil-sphere. This paper discusses sediments-soil-sphere erosion modeling. In fact sediments-soil-sphere erosion is including water erosion, wind erosion, melt-water erosion, gravitational water erosion, and mixed erosion. We have established geographical remote sensing information modeling (RSIM) for different erosion that was using remote sensing digital images with geographical ground truth water stations and meteorological observatories data by remote sensing digital images processing and geographical information system (GIS). All of those RSIM will be a geographical multidimensional gray non-linear equation using mathematics equation (non-dimension analysis) and mathematics statistics. The mixed erosion equation is more complex that is a geographical polynomial gray non-linear equation that must use time-space fuzzy condition equations to be solved. RSIM is digital image modeling that has separated physical factors and geographical parameters. There are a lot of geographical analogous criterions that are non-dimensional factor groups. The geographical RSIM could be automatic to change them analogous criterions to be fixed difference scale maps. For example, if smaller scale maps (1:1000 000) that then will be one or two analogous criterions and if larger scale map (1:10 000) that then will be four or five analogous criterions. And the geographical parameters that are including coefficient and indexes will change too with images. The geographical RSIM has higher precision more than mathematics modeling even mathematical equation or mathematical statistics modeling.

  • PDF

Application of Remote Sensing and GIS to Flood Monitoring and Mitigation

  • Petchprayoon, Pakorn;Chalermpong, Patiwet;Anan, Thanwarat;Polngam, Supapis;Simking, Ramphing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.962-964
    • /
    • 2003
  • In 2002 Thailand was faced with severe flooding in the North, Northeast and Central parts of the country caused by heavy rainfall of the monsoonal depression which brought about significant damages. According to the report by the Ministry of Interior and the Ministry of Agricultural and Co-operatives, the total damages were estimated to be about 6 billion bath. More than 850,000 farmers and 10 million livestock were effected. An area of 1,450,000 ha of farmland in 59 Provinces were put under water for a prolonged period. Satellite imageries were employed for mapping and monitoring the flood-inundated areas, flood damage assessment, flood hazard zoning and post-flood survey of river configuration and protection works. By integrating satellite data with other updated spatial and non-spatial data, likely flood zones can be predicted beforehand. Some examples of satellite data application to flood dis aster mitigation in Thailand during 2002 using mostly Radarsat-1 data and Landsat-7 data were illustrated and discussed in the paper. The results showed that satellite data can clearly identify and give information on the status, flooding period, boundary and damage of flooding. For comprehensive flood mitigation planning, other geo-informatic data, such as the elevation of topography, hydrological data need to be integrated. Ground truth data of the watershed area, including the water level, velocity, drainage pattern and direction were also useful for flood forecasting in the future.

  • PDF

Development of a Maryblyt-based Forecasting Model for Kiwifruit Bacterial Blossom Blight (Maryblyt 기반 참다래 꽃썩음병 예측모형 개발)

  • Kim, Kwang-Hyung;Koh, Young Jin
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • Bacterial blossom blight of kiwifruit (Actinidia deliciosa) caused by Pseudomonas syringae pv. syringae is known to be largely affected by weather conditions during the blooming period. While there have been many studies that investigated scientific relations between weather conditions and the epidemics of bacterial blossom blight of kiwifruit, no forecasting models have been developed thus far. In this study, we collected all the relevant information on the epidemiology of the blossom blight in relation to weather variables, and developed the Pss-KBB Risk Model that is based on the Maryblyt model for the fire blight of apple and pear. Subsequent model validation was conducted using 10 years of ground truth data from kiwifruit orchards in Haenam, Korea. As a result, it was shown that the Pss-KBB Risk Model resulted in better performance in estimating the disease severity compared with other two simple models using either temperature or precipitation information only. Overall, we concluded that by utilizing the Pss-KBB Risk Model and weather forecast information, potential infection risk of the bacterial blossom blight of kiwifruit can be accurately predicted, which will eventually lead kiwifruit growers to utilize the best practices related to spraying chemicals at the most effective time.

Changes of River Morphology in the Mid-lower Part of Nakdong River Basin after the 4 Large River Project, South Korea (4대강 사업 후 낙동강 중·하류의 하중도와 제외지 지형변화)

  • Im, Ran-Young;Kim, Ji Yoon;Choi, Jong-Yun;Do, Yuno;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.188-194
    • /
    • 2015
  • River channel dredging and riparian development have been influenced morphology and quantity of natural river habitat. We compared distribution of riverside land and alluvial island in the Nakdong River with field survey and remote sensing analysis after the 4 Large River Project in South Korea. We digitized geomorphological elements, includes main channel, riverside land, and alluvial island by using georeferenced aerial photos taken in pre-dredging (2008) and post-dredging (2012) periods. Field survey was followed in 2012 for a ground truth of digitized boundaries and identification of newly constructed wetland types such as pond, channel, branch, and riverine type. We found that during the dredging period, riverside land and alluvial island were lost by 20.2% and 72.7%, respectively. Modification rate of riverside land was higher in the section of river kilometer 50~90, 140~180, and 210~270. Alluvial island had higher change rate in the section of river kilometer 50~70, 190~210, and 270~310. Average change rate for the riverside land and alluvial island was $-1.02{\pm}0.14km^2{\cdot}10km^{-1}$ and $-0.05{\pm}0.05km^2{\cdot}10km^{-1}$, respectively. Channel shaped wetlands (72.5%) constituted large portion of newly constructed wetlands.

Image Translation: Verifiable Image Transformation Networks for Face Sketch-Photo and Photo-Sketch (영상변형:얼굴 스케치와 사진간의 증명가능한 영상변형 네트워크)

  • Sung, Thai-Leang;Lee, Hyo-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.451-454
    • /
    • 2019
  • In this paper, we propose a verifiable image transformation networks to transform face sketch to photo and vice versa. Face sketch-photo is very popular in computer vision applications. It has been used in some specific official departments such as law enforcement and digital entertainment. There are several existing face sketch-photo synthesizing methods that use feed-forward convolution neural networks; however, it is hard to assure whether the results of the methods are well mapped by depending only on loss values or accuracy results alone. In our approach, we use two Resnet encoder-decoder networks as image transformation networks. One is for sketch-photo and another is for photo-sketch. They depend on each other to verify their output results during training. For example, using photo-sketch transformation networks to verify the photo result of sketch-photo by inputting the result to the photo-sketch transformation networks and find loss between the reversed transformed result with ground-truth sketch. Likely, we can verify the sketch result as well in a reverse way. Our networks contain two loss functions such as sketch-photo loss and photo-sketch loss for the basic transformation stages and the other two-loss functions such as sketch-photo verification loss and photo-sketch verification loss for the verification stages. Our experiment results on CUFS dataset achieve reasonable results compared with the state-of-the-art approaches.

The Installation of Chul-Won Seismo-Acoustic Array (철원 지진-공중음파 관측망 설치)

  • ;;;;;;;Brian stump;Christ Hayward
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.52-57
    • /
    • 1999
  • Korea Earthquake Monitoring System(KEMS) in the Korea Institute of Geology Mining and Materials(KIGAM) as detected more than 1000 events since the end of 1998. But not all events are interpreted as earthquakes because many events are concentrated on daytime. It strongly implies that in addition to earthquake these events include artificial effects such as industrial blasting. Before the determination of eathquake charactertistics in the korean peninsula it is necessary to discriminate the detected events as earthquakes or artificial events. For the discriminant study KIGAM and SMU(Southern Methodist University) installed a triangular four-element 1-km aperture seismo-acoustic array at Chul-Won area northeast of Seoul Korea. Each array element includes a GS-13 seismometer in the bottom of borehole and a Validyne DP250-14 microbarometer sensor mounted inside of the borehole 1,2 meter deep connected to a 11 arm radial array of 10m porous soaker hoses. This array introduce the use of 2.4-GHz radios for inter-array self-contained solar-charged power system and GPS time-keeping system. A 24-bit digital data acquisition system performs 40 SPS in the infrasound and seismometer data. Velocity and direction of wind and temperature are also measured at hub site and included to the data stresam. This seismo-acoustic array will be used to identify and locate associated with industrial blasting and these identified and located events will be applied to form a ground truth database useful to assist the other development of discriminant studies.

  • PDF

Topographic Normalization of Satellite Synthetic Aperture Radar(SAR) Imagery (인공위성 레이더(SAR) 영상자료에 있어서 지형효과 저감을 위한 방사보정)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.57-73
    • /
    • 1997
  • This paper is related to the correction of radiometric distortions induced by topographic relief. RADARSAT SAR image data were obtained over the mountainous area near southern part of Seoul. Initially, the SAR data was geometrically corrected and registered to plane rectangular coordinates so that each pixel of the SAR image has known topographic parameters. The topographic parameters (slope and aspect) at each pixel position were calculated from the digital elevation model (DEM) data having a comparable spatial resolution with the SAR data. Local incidence angle between the incoming microwave and the surface normal to terrain slope was selected as a primary geometric factor to analyze and to correct the radiometric distortions. Using digital maps of forest stands, several fields of rather homogeneous forest stands were delineated over the SAR image. Once the effects of local incidence angle on the radar backscatter were defined, the radiometric correction was performed by an empirical fuction that was derived from the relationship between the geometric parameters and mean radar backscatter. The correction effects were examined by ground truth data.