• Title/Summary/Keyword: Ground Transportation

Search Result 434, Processing Time 0.027 seconds

Behavior of Tunnel Due to Adjacent Ground Excavation with Pre-loading on Braced Wall (근접 굴착시 흙막이벽 버팀대 선행하중 재하에 따른 터널의 거동)

  • Kim, Il;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.163-174
    • /
    • 2007
  • A New pre-loading system, through which a large pre-load could be charged was developed and applied to the braced wall in order to stabilize the adjacent tunnel. A pre-load larger than the designated axial force of bracing was imposed to prevent the horizontal displacement of the braced wall during the ground excavation. For this purpose, real scale model tests (1/10) were conducted, without and with pre-load on braced wall. And numerical analyses were performed for both the cases without and with pre-load, which were half (50%) and full (100%) respectively, and larger scale of the design axial farce of bracing. FEM program called PLAXIS was used for numerical analysis. As a result, it was found that the stability of the existing tunnel adjacent to the braced wall could be greatly enhanced when the horizontal displacement of braced wall was reduced by applying a pre-load, which was larger than the designated axial force of bracing.

LTE-Cat.M1 Conformity Test in Sounding Rocket Communication Systems (Sounding Rocket 통신 시스템에서의 LTE-Cat.M1 사용 적합성 시험)

  • Seung-Hwan Lee;Tae-Hoon Kim;Hyemin Kim;Da Wan Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.589-594
    • /
    • 2024
  • In this paper, we introduce the results of the Sounding Rocket LTE communication test using the LTE-Cat.M1 module. The developed LTE data transmission/reception system consists of Mission-Mounted Equipment(Payload) and Ground Observation Equipment(GOE), and the delay rate was secured based on the time between data measured when received from the GOE by constantly transmitting data from the Payload at a speed of 10 Hz. In order to increase the accuracy of the actual flight test, ground network delay rate tests, hardware internal delay rate tests, and ground tests were performed. As a result of the flight test, it was confirmed that the handover failed in the upward phase and the communication was lost for 13 seconds, and then the parachute was deployed and the communication was reconnected in a situation with a constant positional displacement. LTE-Cat.M1 technology is expected to be utilized for descent phase observation missions or data backup during Sounding Rocket missions.

A Safety Analysis of the BTR Method by Construction Sequence (BTR공법의 시공단계별 안전성 해석)

  • Chung, Kuang-Mo;Lee, Won-Hee;Lee, Sang-Hyun;Bang, Myung-Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • In this study was conducted numerical analysis to evaluate the stability of BTR(Built-in Timber Roof Tunneling Method), which is one of construction methods of underground structures in the non-opening state. The discretion method was applied to individually model reinforcing members of BTR, and the homogeneity analysis technic by area ratio was used to verify the feasibility comparing this result with that from conventional analysis method. The parameter study was performed to evaluate the effect varying ground depth, distance length of reinforcing supports and to verify the field applicability of new analysis method. The results showed the very precise value with allowable error, so this method can be applied in the field, The more length of supporting members caused the more vertical displacement and the top displacement increment of support members is larger than that of ground surace. The effect of ground depth was more impressive than that of distance length of reinforcing supports.

An Empirical Model for Estimating Bus Boarding and Alighting Time (버스 승하차시간 추정 모형 개발)

  • Seong, Myeong Eon;Choi, Keechoo;Shin, Kangwon;Chung, Woohyun;Lee, Kyu Jin
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.152-161
    • /
    • 2014
  • The total boarding and alighting time models have been developed by applying the multiple regression analysis with three variables; numbers of boarding or alighting passengers, non-sitting passengers, and the step-height from the ground. Such variables have influenced to the total boarding time model with the most influential in the numbers of boarding or alighting passengers and the least in the step-height. On the total alighting time model, the numbers of alighting passengers are the most strongest while the step-heights the least. The total boarding and alighting time models can be used in practices for the prediction of current and future bus stops' capacities in TOD-based towns.

Time-Series Interferometric Synthetic Aperture Radar Based on Permanent Scatterers Used to Analyze Ground Stability Near a Deep Underground Expressway Under Construction in Busan, South Korea (고정산란체 기반 시계열 영상레이더 간섭기법을 활용한 부산 대심도 지하 고속화도로 건설 구간의 지반 안정성 분석)

  • Taewook Kim;Hyangsun Han;Siung Lee;Woo-Seok Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.689-699
    • /
    • 2023
  • Assessing ground stability is critical to the construction of underground transportation infrastructure. Surface displacement is a key indicator of ground stability, and can be measured using interferometric synthetic aperture radar (InSAR). This study measured time-series surface displacement using permanent scatterer InSAR applied to Sentinel-1 SAR images acquired from January 2017 to June 2023 for the area around a deep underground expressway under construction to connect Mandeok-dong and Centum City in Busan, South Korea. Regions of seasonal subsidence and uplift were identified, as were regions with severe subsidence after summer 2022. To evaluate stability of the ground in the construction area, the mean displacement velocity, final surface displacement, cumulative surface displacement, and difference between minimum and maximum surface displacement were analyzed. Considering the time-series surface displacement characteristics of the study area, the difference between minimum and maximum surface displacement since June 2022 was found to be the most suitable parameter for evaluating ground stability. The results identified highly unstable ground in the construction area as being to the north of the mid-lower reaches of the Oncheon-cheon River and to the west of the Suyeong River at the point where both rivers meet, with the difference between minimum and maximum surface displacement of 40~60 mm.

Design and Implementation of Wireless Power Transfer System for a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 무선급전 시스템 설계 및 구현)

  • Kang, Seok-Won;Jeong, Rag-Gyo;Byun, Yeun-Sub;Um, Ju-Hwan;Kim, Baek-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.289-298
    • /
    • 2014
  • Recently, the traditional paradigm in railroad technology is changing as more efficient and cost-effective electric vehicle (EV) technologies have emerged. The original concept of PRT (Personal Rapid Transit) proposed in the past has come to be regarded as unrealistic, but its feasibility is improving through the utilization of an EV platform. In particular, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. However, based on the inductive power transfer (IPT) technology, the fast charging of supercapacitors with high energy density can contribute to overcoming this technical challenge and promote the transition to electric-powered ground transportation by improving the appearance of cities. This study discusses the development process of a power supply system for PRT, including concept design, numerical analysis, and device manufacturing, along with performance predictions and evaluations. In terms of results, the system was found to meet the performance requirements for power supply modules on a test-bed.

Experimental study on the longitudinal load transfer of a shallow tunnel depending on the deformation tunnel face (I) (얕은 터널의 굴진면 변형에 따른 종방향 하중전이 특성에 대한 실험적 연구(I))

  • Kim, Yang Woon;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.487-497
    • /
    • 2016
  • If a tunnel is excavated, the released stress is redistributed in the ground around the tunnel face, which lead the stress state of the surrounding ground of the tunnel and the load acting on the tunnel support to change. If the tunnel face deforms, the ground ahead of it is relaxed, and the earth pressure acting on it decreases. And if the displacement increases so much that, the ground ahead of the tunnel face reaches in failure state. At this time, load would be transferred longitudinally in the tunnel, depending on the cover and the face deformations. The longitudinal load transfers in the tunnels induced by the tunnelling has been often studied; however, the relation between the deformation of the tunnel face and the longitudinal load transfer was rarely studied. Therefore in this study assesses the characteristics of the longitudinal load transfer as the face was failed by displacement by conducting a model test in a shallow tunnel. In other words, the longitudinal load transfer of the tunnel with the progress of the face deform was measured by conducting a model test, beginning at the state of earth pressure at rest. As results of this study, most of the longitudinal load transfers occurred drastically at the beginning of the displacement of the tunnel face, and as the displacement of the face approached the ultimate displacement, it converged to the ultimate displacement at a gentler slope. In other words, when the ground ahead of the tunnel face was still in an elastic state, the longitudinally transferred load increased sharply at the beginning stage but it tended to increase gradually if it approached to the ultimate limit. Thus, it was noted that the earth pressure in the face and the longitudinal load transfer of the tunnel had the same decreasing tendency.

Experimental study on the longitudinal load transfer of a shallow tunnel depending on the deformation tunnel face (II) (얕은 터널의 굴진면 변형에 따른 종방향 하중전이 특성에 대한 실험적 연구(II))

  • Kim, Yang Woon;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.499-509
    • /
    • 2016
  • In recent years, the use of underground spaces becomes more frequent and the demands for urban tunnels are rapidly increasing. The urban tunnels constructed in the ground with a shallow and soft cover might be deformed in various forms on the face, which would lead, the tunnels to behavior 3-dimensionally, which may have a great impact on the longitudinal load transfer. The tunnel face might deform in various forms depending on the construction method, overburden and the heterogeneity of the ground. And accordingly, the type and size of the distribution of the load transferred to the ground adjacent to the tunnel face as well as the form of the loosened ground may appear in various ways depending on the deformation form of the tunnel face. Therefore, in this study was conducted model tests by idealizing the deformation behavior of the tunnel face, that were constant deformation, the maximum deformation on the top and the maximum deformation on the bottom. And the test results were analyzed focusing on the deformation of the face and the longitudinal load transfer at the ground above the tunnel. As results, it turned out that the size and the distribution type of the load, which was transferred to the tunnel as well as the earth pressure on the face were affected by the deformation type of the face. The largest load was transferred to the tunnel when the deformation was in a constant form. Less load was transferred when the maximum deformation on the bottom, and the least load was transferred when the maximum deformation on the top. In addition, it turned out that, if the cover became more shallow, a longitudinal load transfer in the tunnel would limited to the region close to the face; however, if the cover became higher than a certain value, the area of the load transfer would become wider.

A Study on the P~q~t Charts Applicability for Quality Improvement of Water-Sealing&Reinforcement Grouting in Tunneling Work Underneath the City (도심지 지하 터널시공 중 차수·보강 그라우팅 공사의 품질향상을 위한 P~q~t charts 적용성 연구)

  • Kim, Jin-Chun;Kim, Seok-Hyun;Yoo, Byung-Sun;Kang, Hee-Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.51-63
    • /
    • 2021
  • This study is for the quality improvement of water-sealing & reinforcement grouting in tunnel of the construction of the underground transportation network underneath the city. Existing tunnel grouting process did not technically utilize P~q~t charts fully. It is due to the absence of technical methods to decide how P~q~t charts change in the presence of trouble and what the change represents in grouting. There were no standards to decide which chart pattern represents which ground characteristics, how to categorize ground types, and how to take measures according to the standards. This paper studies on the grouting type, ground characteristics, ground type categorizing method, and countermeasures for both general and algorithm-processed grouting in soil and rock layer to address the aforementioned problems. Newly improved P~q~t charts from grouting in soil was categorized into six different types. Different characteristics and categorization method was developed for each type. Countermeasures for each type of grouting process were developed so that on-site application can be readily available. Improved P~q~t charts for rock layer also have six different types of grouting. Each type was given the countermeasures for rock layer grouting process for easier applications. Therefore, it is expected to be used through out the entire process of grouting from preparation to the last report of the water-sealing & reinforcement grouting in tunnel of the construction of the underground transportation network underneath the city.

Association between Helicopter Versus Ground Emergency Medical Services in Inter-Hospital Transport of Trauma Patients (응급의료 전용헬기와 지상 앰뷸런스를 이용한 병원 간 이송에서 외상 환자의 예후 비교)

  • Kang, Kyeong Guk;Cho, Jin Seong;Kim, Jin Ju;Lim, Yong Su;Park, Won Bin;Yang, Hyuk Jun;Lee, Geun
    • Journal of Trauma and Injury
    • /
    • v.28 no.3
    • /
    • pp.108-114
    • /
    • 2015
  • Purpose: To improve outcome of severe trauma patient, the shortening of transport time is needed. Although helicopter emergency medical services (HEMS) is still a subject of debate, it must also be considered for trauma system. The aim of this study is to assess whether transport method (HEMS versus ground EMS) is associated with outcome among inter-hospital transport. Methods: All trauma patients transported to regional emergency center by either HEMS or ground EMS from September 2011 to September 2014. We have classified patients according to two groups by transport method. Age younger than 15 years and self-discharged patients were excluded. Results: A total of 427 patients were available for analysis during this period. 60 patients were transported by HEMS and 367 patients were transported by ground EMS. HEMS group had higher mortality than ground EMS group (23.3% vs 3.5%; p<0.001), and included more patients with excess mortality ratio adjusted injury severity score (EMR-ISS) above 25 (91.7% vs 48.8%; p<0.001). In the multivariable regression analysis, HEMS was not associated with improved outcome compared with ground EMS, but only EMR-ISS was associated with a mortality of patients (odds ratio, 1.06; 95% confidence interval, 1.04-1.09). Conclusion: In this study, helicopter emergency medical services transport was not associated with a decreased of mortality among the trauma patients who inter-hospital transported to the regional emergency center.

  • PDF