• Title/Summary/Keyword: Ground Strain

Search Result 484, Processing Time 0.024 seconds

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

Geotechnical Characteristics of DCM-Improved Specimen Under Artesian Pressure (피압 작용에 따른 DCM 개량체의 지반공학적 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • This study investigated the effect of artesian pressure on mechanical properties of deep cement mixing (DCM)-improved specimens. Various laboratory tests such as unconfined compression test and scanning electron microscope (SEM) were conducted on DCM specimens which curied in a water tank with different artesian pressures. The artesian pressure was determined in consideration of the laboratory scale and the hydraulic gradient in field conditions. Results of experimental tests indicated that unconfined compressive strength, secant modulus, and unit weight of specimen decreased and water content tended to increase as an artesian pressure increased. The stress-strain behavior changed brittle to ductile behaviors as an artesian pressure increased. The outflow water from the water tank reacted with the phenolphthalein solution due to the leaching phenomenon of the improved specimen. SEM analysis also confirmed that a small amount of ettringite was formed between soil particles in the specimens with artesian pressure.

Estimation of Shear Moduli Degradation Characteristics from Pressuremeter Tests (프레셔미터 시험을 이용한 전단탄성계수 감쇠 특성 평가)

  • Kwon, Hyung Min;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.105-113
    • /
    • 2009
  • Pressuremeter test estimates deformational properties of soil from the relationship between applied pressure and the displacement of cavity wall, and the results reflect the in-situ stress condition and the structure of soil particles. This study suggests the overall process of test and analysis for the evaluation of nonlinear degradation characteristics of shear moduli, based on the reloading curve of pressuremeter test. The method estimates the maximum shear modulus, taking into account the difference between the stress states around the probe in reloading and that of the in-situ state, and then combines the degradation characteristics of shear moduli taken from reloading curve. This procedure derives the shear moduli in overall strain range. Pressuremeter tests were carried out in various ground conditions using large calibration chamber, together with various reference tests. Shear moduli taken from pressuremeter tests were compared with bender element test and resonant column test results.

Study of Continuous Monitoring for Underground and Geotechnical Structures using Accelerometers (가속도계를 활용한 지하 및 지반구조물 상시 계측 방안에 관한 연구)

  • Gunwoong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.19-27
    • /
    • 2024
  • Geotechnical structures such as dams, tunnels, and slopes require regular inspection and monitoring to ensure stability. Domestically, drones and accelerometers have become common tools for inspecting and monitoring various structures. However, drones have difficulty identifying internal changes in structures and the subsurface, and accelerometers generally serve for seismic design or strain measurement purposes. Therefore, this paper proposes to utilize accelerometers to monitor the internal information of the ground on a real-time or periodic basis. The proposed method utilizes a part of the analysis technique from the SASW test to monitor the stability and state changes of geotechnical structures. Cases where SASW was used to evaluate the safety of geotechnical structures, such as slopes, dams, and tunnels, were reviewed to verify the suitability of the technology. To make the proposed method more practical, the study considered using only the first-step analysis to derive the dispersion curve rather than the second-step analysis to determine the shear wave velocity profile, which requires complex analysis. The proposed technique is expected to enable the continuous monitoring and inspection of geotechnical structures by utilizing accelerometers.

Characteristics of Seed Germination in Heteropappus arenarius Kitam. Native to Korea as Influenced by Temperature (온도에 따른 자생 주걱쑥부쟁이의 종자발아특성)

  • Lee, Chang-Hee;Nam, Ki-Woong
    • Korean Journal of Plant Resources
    • /
    • v.22 no.2
    • /
    • pp.116-122
    • /
    • 2009
  • Heteropappus arenarius Kitam., an autumn-flowering biennial belonging to wild chrysanthemums, is found to be native in southeastern coastal area and Jeju island of Korea. It could play a good role for ground cover plants on a large-scale landscape area, especially, barren soil or sloping hillside. This study was initiated to screen optimum germination temperature influenced by local strain and harvesting stage of H. arenarius. The following was the response of seed germination between local strain and temperature. The average of final germination percentage (FG) was the highest in 'Guryongpo' (89.7%) among four local strains, followed by 'Gujwa' (87.3%), 'Gampo' (87.3%), and 'HKNU-I' (71.5%). The average of $T_{50}$ was shorter in 'Gujwa' (3.6 d) and 'Guryongpo' (4.0 d) than the others. The average of FG and $T_{50}$ was the highest as 76.2% and shortest as 3.6 d in $20^{\circ}C$, respectively, followed by $30^{\circ}C$, $25^{\circ}C$, and $15^{\circ}C$. In case of 'Gujwa', however, FG and T50 was higher in $20^{\circ}C$ and shorter in $15^{\circ}C$ than others. In the relationship between harvesting stage and temperature, the average of FG was greatly higher in Stage III (90.7%) and Stage IV (88.6%) than the others including Stage II (35.7%) and Stage I (26.0%). The average of $T_{50}$ was shorter in Stage IV (3.7 d) and Stage III (4.3 d) than the others, which showed less than 50% of FG. Nevertheless, the available range of seed harvesting stage was from Stage I to Stage IV because H. arenarius seeds could germinate at all stages. In conclusion, it was recommended that the optimum temperature and harvesting stage was $20^{\circ}C$ and Stage $III{\sim}IV$, respectively, for seed germination of H. arenarius.

Analysis of Tensile Force of Nail and Displacement of Soil Nailed Wall at Stepwise Excavation (단계별 굴착시 쏘일네일링 벽체의 변위와 네일의 인장력 분석)

  • 전성곤
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.71-86
    • /
    • 1999
  • The displacements of soil nailed wall and the nail tensile force for 11 soil nailing sites were investigated by using measurements obtained from inclinometer and strain gauge. The maximum horizontal displacement which occurred between 5% and 15% of the final excavation depth was found to be below 0.3% and 0.2% of excavation depth for well and poorly constructed sites. It was also found that the maximum horizontal displacements for 0.4%, 0.3% and 0.2% of excavation depth occurred when the ratios of nail length to final excavation depth were 0.5, 0.5~0.6 and 0.6~0.7. But the maximum horizontal displacement increased by 0.3% of excavation depth when the ratio was above 0.7. This was probably due to the shallow excavation depth and the deep soil stratum. The non-dimensional maximum tensile force of nail, K, from ground surface to $(0.6H_f)$ of the final excavation depth was less than 0.8 and decreased linearly between $(0.6H_f)$ and the final excavation depth. Also, the maximum tensile force was found to reach up to 60% of the ultimate tensile force at final excavation.

  • PDF

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

Earth Pressure Analysis of Tunnel Ceiling according to Tunnel Plastic Zone (터널 소성영역에 따른 터널 천단토압 해석)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.753-764
    • /
    • 2020
  • In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.