• Title/Summary/Keyword: Ground Source Heat Pump (GSHP)

Search Result 113, Processing Time 0.026 seconds

Analysis on the Effect of Local Climate on the Unit-type Ground Heat Exchanger (지역 기후가 유닛형 지중열교환기 성능에 미치는 영향)

  • Bae, Sangmu;Kim, Jae-Min;Nam, Yujin
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • A ground source heat pump (GSHP) system can stable system operation by using underground heat source and has high reliability for energy production. However, wide-spread of the GSHP system is delayed to high initial investment costs. In previous studies, horizontal and unit-type ground heat exchanger (GHX) have developed to overcome disadvantages such as high initial cost. However, these performances of GHXs are greatly influenced by climate and weather conditions. It is necessary to analyze the performance of GHX according to the ground temperature change in the installation site. In this study, the ground temperature of each installation site confirmed and performance of unit-type GHX quantitatively analyzed by numerical analysis. As the result, the performance of the unit type GHX was 33.9 W/m in Seoul, 34.2 W/m in Daejeon, and 37.2 W/m in Busan.The result showed the difference performance of GHX according to local climate was maximum of 9.7%.

An Applicability Analysis of River Water Source Heat Pump System using EnergyPlus Simulation (에너지플러스 시뮬레이션을 통한 하천수 열원 히트펌프 시스템의 적용 가능성 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • A water source heat pump (WSHP) system is regarded as an energy-efficiency heating and cooling supply system for buildings due to its high energy efficiency and low greenhouse gas emissions. Recently, water sources such as river water, lake water, and raw water are attracting attention as heat sources for a heat pump system in Korea. This paper analyzed the applicability of a river water source heat pump system (RSHP). The river water temperature level was compared with the outdoor air and ground temperature levels to present applicability. In addition, the cooling and heating performance were compared through a simulation approach for the RSHP and a ground source heat pump (GSHP) applied to a large-scale office building. To compare the temperature level, the actual data were applied to the river water and the outdoor air, while the simulation results were applied to the ground circulation water. The results showed that the change in river water temperature throughout the year was similar to the change in outdoor air temperature. However, unlike the outdoor air temperature, the difference between the hourly and daily average river water temperatures was not large. The temperature level of river water was lower during the heating season and somewhat higher during the cooling season than that of the ground circulation water. Finally, the performance of the RSHP system was 13.4% lower than that of the GSHP system on an annual-based.

Evaluation on Cooling Performance of Ground Source Heat Pump System Equipped with Steel-pipe Civil Structures (강관 토목구조물이 설치된 지열 히트펌프 시스템의 냉방 성능 평가)

  • Seokjae Lee;Jeonghun Yang;Hangseok Choi
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.14-22
    • /
    • 2023
  • Steel-pipe civil structures, including steel-pipe energy piles and cast-in-place piles (CIPs), utilize steel pipes as their primary reinforcements. These steel pipes facilitate the circulation of a working fluid through their annular crosssection, enabling heat exchange with the surrounding ground formation. In this study, the cooling performance of a ground source heat pump (GSHP) system that incorporated steel-pipe civil structures was investigated to assess their applicability. First of all, the thermal performance test was conducted with steel-pipe CIPs to evaluate the average heat exchange amount. Subsequently, a GSHP system was designed and implemented within an office container, considering the various types of steel-pipe civil structures. During the performance evaluation tests, parameters such as the coefficient of performance (COP) and entering water temperature (EWT) were closely monitored. The outcomes indicated an average COP of 3.74 for the GSHP system and the EWT remained relatively stable throughout the tests. Consequently, the GSPH system demonstrated its capability to consistently provide a sufficient heat source, even during periods of high cooling thermal demand, by utilzing the steel-pipe civil structures.

Life Cycle Assessment of Heating Systems using Ground Source Heat Pump: A Comparison Analysis between Radiant and Convective Heating (지열 히트펌프를 이용한 난방 시스템의 전과정평가: 복사난방과 대류난방 비교)

  • Sangmu Bae;Hyun-Jung Choi;Gyeong-Seok Choi;Hobyung Chae;Jinhwan Oh;Yeonju Kang;Yujin Nam
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.20 no.4
    • /
    • pp.1-11
    • /
    • 2024
  • The ground source heat pump (GSHP) using radiant heating can reduce energy consumption and ensure thermal comfort for occupants, compared to convective heating method. However, to utilize the GSHP using radiant heating as a technology for achieving zero energy buildings, it is necessary to quantitatively assess the environmental impact. Most previous studies have focused on the energy efficiency aspects of the GSHP using radiant heating, but there is a lack of quantitative data on the carbon emissions generated. Therefore, in this study, to quantitatively assess the environmental impact of the GSHP using radiant heating, an integrated simulation model based on energy simulation was developed. The life cycle assessment method was used to analyze the carbon emissions generated during the manufacturing, installation, operation, and disposal stages. Moreover, to demonstrate the environmental benefits of the GSHP using radiant heating, the carbon emissions were compared to convective heating.

The development of a ground source heat pump using R410A (R410A 대체냉매 적용 지열히트펌프 개발)

  • Kim, Ji-Dong;Chung, Bong-Chul;Jeong, Il-Kwon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • The growth of domestic energy demand is rapidly increased for the industrialization and the improvement of the living standards. It is also recognised that the importance of the use of environmentally friendly energy and high efficient equipment. Ground Source heat pumps (GSHP) using earth as heat source or sink are outstanding environmentally friendly energy systems which have high thermal efficiency when compared to conventional heating and cooling system. So government employs a policy and increase investment for expanding renewable energy market volume. Especially is established a system for obligatory usage of renewable energy to achieve 5% renewable energy diffusion rate by 2011. And the market demand for the ground source heat pump is rapidly growing due to its strong advantages. However domestic situation usually have been depended on the import of ground source heat pumps. In this paper, the results of development of a ground source heat pump using refrigerant R410A are reported.

  • PDF

The development of a ground source heat pump using R410A (R410A 대체냉매 적용 지열히트펌프 개발)

  • Kim, Ji-Dong;Chung, Bong-Chul;Jeong, Il-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.99-102
    • /
    • 2008
  • The growth of domestic energy demand is rapidly increased for the industrialization and the improvement of the living standards. It is also recognised that the importance of the use of environmentally friendly energy and high efficient equipment. Ground Source heat pumps(GSHP) using earth as heat source or sink are outstanding environmentally friendly energy systems which have high thermal efficiency when compared to conventional heating and cooling system. So government employs a policy and increase investment for expanding renewable energy market volume. Especially is established a system for obligatory usage of renewable energy to achieve 5% renewable energy diffusion rate by 2011. And the market demand for the ground source heat pump is rapidly growing due to its strong advantages. However domestic situation usually have been depended on the import of ground source heat pumps. In this paper, the results of development of a ground source heat pump using refrigerant R410A are reported.

  • PDF

Application study of heat storage type GSHP system in Apartment building with central cooling and heating facilities using life cycle cost analysis (LCC 분석을 이용한 중앙공급식 공동주택의 수축열식 지열원 히트펌프시스템의 적용연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Cho, Sung-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1497-1502
    • /
    • 2009
  • The present study has been conducted economic analysis of heat storage type ground source heat pump system(HSGSHP) and normal ground source heat pump (GSHP) and central boiler system with individual air conditioning facility which are installed at the same building in the shared an apartment house. Cost items, such as initial construction cost, annual energy cost and maintenance cost of each system are considered to analyze life cycle cost (LCC) and simple payback period (SPP) with initial cost different are compared. The initial cost is a rule to the Government basic unit cost of production. LCC applied present value method is used to assess economical profit of both of them. Variables used to LCC analysis are prices escalation rate and interest rate mean values of during latest 10 years. The LCC result shows that HSGSHP (1,351,000,000won) is more profitable than central boiler system with individual air conditioning facility by 86.7% initial cost. And SPP appeared 8.0 year overcome the different initial cost by different annual energy cost.

  • PDF

Evaluation of the Annual Performance of the Direct Expansion Vertical Closed-Loop Ground Source Heat Pump (직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가)

  • Kim, Min-Sung;Woo, Joung-Son;Baik, Young-Jin;Jang, Jea-Chul;Kim, Ji-Young;Ra, Ho-Sang
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.534-542
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed-loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As a result, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

  • PDF

Annual Performance Evaluation of Direct Expansion Vertical Closed-Loop Ground Source Heat Pump for Residential Application (주거용 직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가)

  • Kim, Min-Sung;Baik, Young-Jin;Ra, Ho-Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.114-122
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed -loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As results, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

A Study on the Optimal Energy Mix Model in Buildings with OEMGD Algorithm Focusing on Ground Source Heat Pump and District Heating & Cooling System (OEMGD 알고리즘을 이용한 건물 냉난방용 최적 에너지 믹스 모델에 관한 연구 - 지열히트펌프와 지역냉난방 시스템을 중심으로)

  • Lee, Key Chang;Hong, Jun Hee;Lee, Kyu Keon
    • The Korean Journal of Community Living Science
    • /
    • v.27 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • This study was conducted to promote consumer interest in Geothermal Heat Pump (Ground Source Heat Pump, GSHP) and district heating and cooling (District Heating & Cooling, DHC) systems, which are competing with each other in the heating and cooling field. Considering not only the required cost data of energy itself, but also external influence factors, the optimal mix ratio of these two energy systems was studied as follows. The quantitative data of the two energy systems was entered into a database and the non-quantitative factors of external influence were applied in the form of coefficients. Considering both of these factors, the optimal mix ratio of GSHP and DHC systems and minimum Life Cycle Cost (LCC) were obtained using an algorithm model design. The Optimal Energy Mix of GSHP & DHC (OEMGD) algorithm was developed using a software program (Octave 4.0). The numerical result was able to reflect the variety of external influence factors through the OEMGD algorithm. The OEMGD model found that the DHC system is more economical than the GSHP system and was able to represent the optimal energy mix ratio and LCC of mixed energy systems according to changes in the external influences. The OEMGD algorithm could be of help to improve the consumers' experience and rationalize their energy usage.