• Title/Summary/Keyword: Ground Processing

Search Result 864, Processing Time 0.032 seconds

Multi-channel Lidar Processing for Terrain Segmentation (지형분할을 위한 다채널 라이다 데이터 처리)

  • Chu, Phuong;Cho, Seoungjae;Sim, Sungdae;Kwak, Kiho;Cho, Kyungeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.681-682
    • /
    • 2016
  • In this study we propose a novel approach to segment a terrain in two parts: ground and none-ground. The terrain is gained by a multi-channel 3D laser range sensor. We process each vertical line in each frame data. The vertical line is bounded by the sensor's position and a point in the largest circle of the frame. We consider each pair of two consecutive points in each line to find begin-ground and end-ground points. All points placed between a begin-ground point and an end-ground point are ground ones. The other points are none-ground. After examining all vertical lines in the frame, we obtain the terrain segmentation result.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.

Soccer Scene Analysis and Coordinate Transformation using a priori Knowledge (사전 지식을 이용한 축구 경기장면 분석 및 좌표 변환)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo;Yang, Young-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1085-1088
    • /
    • 1999
  • This paper presents a method for soccer scene analysis and coordinate transformation from scene to ground model using a priori knowledge. First, the ground and spectator regions are separated, and various objects are extracted from the separated ground region. Second, an affine model is used for mapping the object positions on the soccer image into the position on the ground model. Problems regarding holes arising from mapping processing are solved using inverse mapping instead of a usual interpolation method. Experiments are performed on a PC using about 100 RGB images acquired at 240*640 resolution and 3∼5 frames per second.

  • PDF

3D Ground Terrain Processing Platform for Automated Excavation System

  • Kim, Seok;Kim, Tae-yeong;Park, Jae-Woo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.669-670
    • /
    • 2015
  • Efficient management of the construction heavy equipment is required to reduce the rate of carbon emissions and on-site accidents. The intelligent excavation system (IES) will improve the construction quality and productivity through information technologies and efficient equipment operation, especially in large earthwork projects. Three-dimensional digitized ground data should be required for identifying the path of heavy equipment and work-site environment. Rapid development of terrain laser scanners (TLS) is more readily to acquire the digital data. This study suggests the '3D ground terrain processing platform (3DGTPP)' including data manipulating module and analyzing module of the scanned data for intelligent earthmoving equipment operation. The processing platform consists of six modules, including scanning, registering, manipulating, analyzing, transmitting, and storing. 3D ground terrain processing platform presented in this study will provide fundamental information for intelligent excavation system (IES), which will increase the efficiency of earthworks and safety of workers in significant.

  • PDF

DESIGN OF COMMON TEST HARNESS SYSTEM FOR SATELLITE GROUND SEGMENT DEVELOPMENT

  • Seo, Seok-Bae;Kim, Su-Jin;Koo, In-Hoi;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.544-547
    • /
    • 2007
  • Because data processing systems in recent years are more complicated, main function of the data processing is divided as several sub-functions which are implemented and verified in each subsystem of the data processing system. For the verification of data processing system, many interface tests among subsystems are required and also a lot of simulation systems are demanded. This paper proposes CTHS (Common Test Harness System) for satellite ground segment development which has all of functions for interface test of the data processing system in one PC. Main functions of the CTHS software are data interface, system log generation, and system information display. For the interface test of the data processing system, all of actions of the CTHS are executed by a pre-defined operation scenario which is written by purpose of the data processing system test.

  • PDF

A Fast Ground Segmentation Method for 3D Point Cloud

  • Chu, Phuong;Cho, Seoungjae;Sim, Sungdae;Kwak, Kiho;Cho, Kyungeun
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.491-499
    • /
    • 2017
  • In this study, we proposed a new approach to segment ground and nonground points gained from a 3D laser range sensor. The primary aim of this research was to provide a fast and effective method for ground segmentation. In each frame, we divide the point cloud into small groups. All threshold points and start-ground points in each group are then analyzed. To determine threshold points we depend on three features: gradient, lost threshold points, and abnormalities in the distance between the sensor and a particular threshold point. After a threshold point is determined, a start-ground point is then identified by considering the height difference between two consecutive points. All points from a start-ground point to the next threshold point are ground points. Other points are nonground. This process is then repeated until all points are labelled.

Ground water control in the open cut site on soft ground with aquifer (하부 대수층이 존재하는 연약지반상의 개착터널에 있어서 지하수 처리 사례)

  • Jeoung, Jae-Hyeung;Hasimoto, Tadasi;Nagaya, Junichi;Bae, Gyu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1420-1425
    • /
    • 2005
  • In a case of an example in Korea, some areas of Yangsan near Busan which exist on soft ground with aquifer, showed us some difficulties of the preparing for housing site and earth structures. From these experiences, recently, the development and research of technology is getting increased, which minimize the influence to the environment from construction work, which is in an agreement with eco-friendly construction in terms of the reasonable processing of ground water. On this case study, one area of Japan that has many site on soft ground with aquifer, is introduced as the reasonable processing of ground water. The applications of the technology for ground water in Korea are discussed.

  • PDF

Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter (무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리)

  • Kim, Deok-Ryeol;Kim, Do-Myoung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

Prospect and Direction on Korean Ground System Development (우리나라 지상시스템의 발전 전망 및 방향)

  • Chung, Daewon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.718-727
    • /
    • 2016
  • Korean ground systems have started to be developed for mission control and payload data processing since 1990s. International technology cooperations were needed in the early development phase of ground system for science experiment satellite, LEO satellite and GEO satellite and then they have been developed as domestic own technology since acquiring early technology. Our country has developed total 14 ground systems until now, this paper suggests prospect and direction on ground system development in the base of such development experiences. Mission control system is needed to develop multi-satellite mission control system in the base of technology of re-configure, re-use and automation. Processing system is needed to acquire processing technology for kinds of payload sensor data and study inter-operation to integrate and use outputs which are processed between users. Finally, national ground system infrastructure is needed to operate kinds of lots of satellites at worldwide area.

SAR Processing Software for Ground Station

  • Kwak, Sung-Hee;Lee, Young-Ran;Shin, Dong-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.634-636
    • /
    • 2003
  • Satrec Initiative (Si) is developing a ground processing system for Synthetic Aperture Radar (SAR) data. SAR provides its own illumination and is not dependent on the light from sun, thus permitting continuous day/night operation and all-weather imaging. The system is capable of producing standard level products from SAR signal. Hence, the system should be able to perform matched filtering, range compression, azimuth compression, multi-look image generation, and geocoded image generation. This paper will describe the processing steps including algorithms, design, and accuracy of the Si's SAR processing system by comparing with commercial software.

  • PDF