• Title/Summary/Keyword: Ground Plane

Search Result 874, Processing Time 0.035 seconds

In situ dental implant installation after decontamination in a previously peri-implant diseased site: a pilot study

  • Kim, Young-Taek;Cha, Jae-Kook;Park, Jung-Chul;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • Purpose: The aim of this study was to examine whether a previous peri-implantitis site can affect osseointegration, by comparing implant placement at a site where peri-implantitis was present and at a normal bone site. A second aim of this study was to identify the tissue and bone reaction after treating the contaminated implant surface to determine the optimal treatment for peri-implant diseases. Methods: A peri-implant mucositis model for dogs was prepared to determine the optimal treatment option for peri-implant mucositis or peri-implantitis. The implants were inserted partially to a length of 6 mm. The upper 4 mm part of the dental implants was exposed to the oral environment. Simple exposure for 2 weeks contaminated the implant surface. After 2 weeks, the implants were divided into three groups: untreated, swabbed with saline, and swabbed with $H_2O_2$. Three implants from each group were placed to the full length in the same spot. The other three implants were placed fully into newly prepared bone. After eight weeks of healing, the animals were sacrificed. Ground sections, representing the mid-buccal-lingual plane, were prepared for histological analysis. The analysis was evaluated clinically and histometrically. Results: The untreated implants and $H_2O_2$-swabbed implants showed gingival inflammation. Only the saline-swabbed implant group showed re-osseointegration and no gingival inflammation. There was no difference in regeneration height or bone-to-implant contact between in situ implant placement and implant placement in the new bone site. Conclusions: It can be concluded that cleaning with saline may be effective in implant decontamination. After implant surface decontamination, implant installation in a previous peri-implant diseased site may not interfere with osseointegration.

Setting of the range for shear strength of fault cores in Gyeongju and Ulsan using regression analysis (회귀분석을 이용한 경주·울산 지역에 분포하는 단층 핵의 전단강도 범위 설정)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.127-140
    • /
    • 2015
  • A fault is one of the critical factors that may lead to a possible ground collapse occurring in construction site. A fault core, however, possibly acting as a failure plane in whole fault zone, is composed of fractured rock and gouge nonuniformly distributed and thus can be characterized by its wide range of shear strength which is generally acquired by experimental method for stability analysis. In this study, we performed direct shear test and grain size distribution analysis for 62 fault core samples cropped from 12 different spots located in the vicinity of Kyongju and Ulsan, Korea. As a result, the range of shear strength representing the characteristics of fault cores in the study regions is determined with regard to vertical stress using a regression analysis for experiment data. The weight ratio of gravels in the samples is proportional to the shear strength and that of silt and clay is in inverse proportion to the shear strength. For most samples, the coefficient of determination is over 0.7 despite of inhomogeneity of them and consequently we determined the lower limit and upper limit of the shear strength with regard to the weight ratio by setting the confidence interval of 95%.

Historical Transformation of Types of Hand-Drawing and Their Hybridization in Landscape Architectural Design (조경 설계에서 손 드로잉 유형의 역사적 변천과 혼성화)

  • Lee, Myeong-Jun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.5
    • /
    • pp.71-86
    • /
    • 2017
  • This work explores the historical transformation of manual landscape architectural drawings in terms of hybridization to uncover their inherent creative aspect. Landscape architectural drawing has duel functions; namely, scientific instrumentality and artistic imagination, which are relative, interchangeable, and transformable. These characteristics have been embodied in the forms of particular types of drawing, projections, perspective views, and diagrams, which are not so much clearly distinguishable as rather mutually complementary and hybridized. In particular, the pictorial views of plants in the forms of a perspective view or elevation were frequently hybridized to projection drawings of grounds and architectural structures, which is called planometrics. Particular drawing types have often emerged as suitable and thereby dominant forms, depending on the particular historical styles of landscape design. Sixteenth-century Italian Renaissance gardens and seventeenth-century French formal gardens were generally visualized in the form of projections. Eighteenth-century and early nineteenth-century English landscape gardens were frequently represented in a pictorial perspective view. In nineteenth-century America, different drawing techniques such as competition drawing, photography, and map overlay were specialized depending on their respective functions. Twentieth-century American modernists began to explore the diagram to deploy design strategies. In such transformation, however, the planometric, which considers both the ground plane and plant's frontal identities simultaneously and thereby is suitable to landscape design, was frequently used as a hybridization technique. In the mid-nineteenth century, a top view of plants replaced the planometric, and then, in the twentieth century, plants were no longer represented artistically, instead reduced to the forms of standardized flat symbols. The use of instrumental visualizations thereby gradually increased rather than the use of an imaginative representation for landscape architectural drawings.

Compact Half Bow-tie-type Quasi-Yagi Antenna for Terrestrial DTV Reception (지상파 디지털 방송 수신용 소형 반 보우 타이 형 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1908-1914
    • /
    • 2013
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The coplanar strip line which feeds the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type rectangular director at a location close to the driver dipole, broadband impedance matching and gain enhancement in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bow-tie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as a design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a good performance such as a frequency band of 450-848 MHz for a VSWR < 2, gain > 4.1 dBi, and front-to-back ratio > 10.4 dB.

Analysis of Air Circulation in Oyster Mushroom Farm

  • Jeong, Won-Geun;Lim, Hack-Kyu;Kim, Tae-Han
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Oyster mushroom farm which could not meet optimum temperature range yields non-uniform sized, low quality products. Thus, this study, utilizing STAR CCM+, one of the computational fluid dynamics (CFD) programs, analyzed the impact of air circulation and temperature distribution. Methods: After we visited numerous mushroom farms, we measured the temperature at the discharge ports of heaters, fan capacity, and the locations of the air circulators in the farms. According to the data, most mushroom growers installed the heaters near the entrance and discharge ports of the heaters at the third growing bed on the same height as the heaters in the entrance. The temperature at the discharge port of heater was $1,26^{\circ}C$, and the fan capacity was 4,500 $m^3$/hr. The air circulator was placed in the center of the mushroom farm 50cm above the ground, and its capacity of inlet port was 1,100 $m^3$/hr and discharge port 1,600 $m^3$/hr. The mushroom farm was insulated. Results: According to the analysis of the temperature distribution in the vertical plane of the entrance side, no air circulation causes the high temperature zone of 296~299K at the discharge port of the heater to take up 34% of area while the operation of air circulators causes it to occupy only 9%. This means that not using air circulators leads to a concentration of high temperature at the discharge port near the entrance. In addition, with the results of the analysis of the temperature distribution in the vertical planes of the center, no air circulation causes the temperature zone of 295~298K at the discharge port of the heater to take up 48% of area while the operation of air circulators causes it to occupy 80%. This shows that the high outlet port temperature disseminated to the center. Conclusions: After ninety minute operation of both heater and air circulator, the interior temperature became stabilized in the mushroom farm. Air circulation made the high temperature at the discharge port disseminate to the center and exit in the farm and equalize the temperature distribution.

Assessing the Positioning Accuracy of High density Point Clouds produced from Rotary Wing Quadrocopter Unmanned Aerial System based Imagery (회전익 UAS 영상기반 고밀도 측점자료의 위치 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.39-48
    • /
    • 2015
  • Lately, Unmanned Aerial Vehicles(UAV), Unmanned Aerial Systems(UAS) or also often known as drones, as a data acquisition platform and as a measurement instrument are becoming attractive for many photogrammetric surveying applications, especially generation of the high density point clouds(HDPC). This paper presents the performance evaluation of a low-cost rotary wing quadrocopter UAS for generation of the HDPC in a test bed environment. Its performance was assessed by comparing the coordinates of UAS based HDPC to the results of Network RTK GNSS surveying with 62 ground check points. The results indicate that the position RMSE of the check points are ${\sigma}_H={\pm}0.102m$ in Horizonatal plane, and ${\sigma}_V={\pm}0.209m$ in vertical, and the maxium deviation of Elevation was 0.570m within block area of ortho-photo mosaic. Therefore the required level of accuracy at NGII for production of ortho-images mosaic at a scale of 1:1000 was reached, UAS based imagery was found to make use of it to update scale 1:1000 map. And also, since this results are less than or equal to the required level in working rule agreement for airborne laser scanning surveying of NGII for Digital Elevation Model generation of grids $1m{\times}1m$ and 1:1000 scale, could be applied with production of topographic map and ortho-image mosaic at a scale of 1:1000~1:2500 over small-scale areas.

Analysis and Design of Soft Ground Tunnels Subject to Steady-State Groundwater Flow (정상류 조건하의 토사터널의 해석 및 설계)

  • Lee, In-Mo;Nam, Seok-Woo;Lee, Myung-Jae
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.41-56
    • /
    • 1994
  • Under the groundwater level, the tunnel face is affected by the seepage force and the groundwater flow may cause a trouble to the tunnel support systems. The appropriate methods of analysis and design in the tunnel face and the lining, considering groundwater flow according to tunnel drainage condition are presented in this thesis. First, the effect of seepage on the stability of tunnel face was studied. Seepage force was estimated by the 3-D finite element analysis and the stability of tunnel face was checked by analytical method. Furthermore, using the finite difference method the stress and displacement on the face were computed for either case, where the seepage force is or is not considered, and the effect of seepage on the tunnel face stability was evaluated. Second, the effect of seepage force on the tunnel lining when construction is finished and steady state seepage flow occurs was studied and a design methodology considering seepage effect was made. Consequently, in case where the groundwater level remains almost unchanged and the steady state groundwater flow occurs, the proper countermeasures for face staility are required according to the condition of groundwater flow. Moreover, the tunnel lining should be designed and constructed considering the seepage force occuring by the groundwater flow toward the tunnel linings.

  • PDF

Probabilistic Three-Dimensional Slope Stability Analysis on Logarithmic Spiral Failure (대수누선파양에 대한 확률론적 3차원 사면안정해석)

  • 서인석;김영수
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.121-140
    • /
    • 1994
  • This paper presents the probabilistic model to evaluate the three-dimensional stability of layered deposits and c-0 soil slopes. Rotational slides are assumed with a cylindroid control part terminated with plane ends. And the potential failure surfaces in this study are assumed with the logarithmic spiral curve refracted at boundary of layers. This model takes into consideration the spatial variabilities of soil properties and the uncertainties stemming from insufficient number of samples and the discrepancies between laboratory measured and in -situ values of shear strength parameters. From the probabilistic approxi mate method (FOSM and SOSM method), the mean and variance of safety factor are calculated, respectively. And the programs based on above models is developed and a case study is analysed in detail to study the sensitivity of results to variations in different parameters by using the programs developed in this study. On the basis of thin study the following conclusions could be stated : (1) The sensitivity analysis shown that the probability of failure is more sensitive to the uncertainty of the angle of internal friction than that of the cohesion, (2) The total 3-D proability of failure and the critical width of failure are significantly affected by total width of slope. It is found that the total 3-D probability of failure and the critical width of failure increase with increasing the slope width when seismic forces do not exist and the total 3-D probability of failure increases with increasing the slope width and the critical width of failure decreases when seismic intensity is relatively large, (3) A decrease in the safety factor (due to effect such as a rise in the mean ground water level, lower shear strength parameters, lower values for the correction factors, etc.) would result in reduction in the critical width of failure.

  • PDF

Behavior Interpretation of Discontinuity for Conservation Treatment of Standing Sculptured Buddha at the Yongamsa Temple, Korea (옥천 용암사 마애불의 보존관리를 위한 불연속면의 거동특성 해석)

  • Lee, Chan-Hee;Jeong, Yeon-Sam;Kim, Ji-Young;Yi, Jeong-Eun;Kim, Sun-Duk
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.81-91
    • /
    • 2004
  • The host rock of standing sculptured Buddha in the Yongamsa temple was macular biotite granite, which has gone through mechanical and chemical weathering. The principal rock-forming minerals are quartz, plagioclase, alkali feldspar, and biotite, the last two of which have been transformed into clay minerals and chlorite due to weathering processes. The bed rock around the Buddha statue is busily scattered with steep inclinations that are almost vertical and discontinuous planes with the strikes of $N8^{\circ}E$. The major joints have the strikes of N4 to $52^{\circ}W$ and N6 to $88^{\circ}E$ and the dips of 42 to $89^{\circ}$. Especially thee development of the joints that cross the major joints causes tile structural instability of the rock. The host rock of the Buddha image is separated into many different rock masses because of the also many different discontinuity, which group accounts for about $12{\%}$ of the rock. Thus it's estimated that the bed rock has not only plane and toppling failure but also wedge failure in all the sides. Since the earth pressure and the inclination pressure are imposed on the body of the Buddha in the basement rock, it's urgent to give a treatment of geotechnical engineering for the sake of its structural stability. The parts where serious fractures are seen should receive the hardening process using the fillers for stones. It's also necessary to introduce a landfill liner system in order to reduce the ground humidity. The rock surface of the Buddha statue are partly contaminated by lichens and bryophyte. The joints have turned into earth, which promotes the growth of weeds and plant roots. Thus biochemical treatments should also be considered to get rid of the vegetation along the discontinuous planes and prevent further biological damages.

  • PDF

Fluid Drag of a Trawl Net and Otter Board Spread in a Midwater Trawl (중층트롤 어구의 그물저항과 전개판 간격)

  • PARK Hae-Hoon;YOON Gab-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.238-244
    • /
    • 2001
  • A method of estimating the fluid drag of a fishing gear and otter board spread in a midwater trawl on full scale was described by implementing a three-dimensional semi-analytic treatment of the towing cable (warp) of a trawl system with the field experiments obtained with the SCANMAR system. The shape of hand rope, bridle and float(or ground) rope attached behind otter boards in a horizontal plane was assumed to be of form $y_r=Ax_r^B$. The distance between otter boards (otter board spread) obtained by the three dimensional analysis of a towing cable must be equal to that obtained by the functional equation of the shape of ropes behind otter boards, The angle of attack of ropes which can be obtained from the functional equation enables one to estimate the fluid drag of trawl net (net drag) by subtracting the fluid drag of the hand rope and bridles from the drag component of the tension of hand rope attached just behind the otter boards.

  • PDF