• Title/Summary/Keyword: Ground Improvement

Search Result 1,463, Processing Time 0.03 seconds

A case Study on Application of Granular Compaction Pile in Fly Ash Landfill Area (Fly ash로 매립된 지역에서 쇄석다짐말뚝 적용에 관한 사례연구)

  • Lee, Jun-Eui;Lee, Seung-Joo;Hong, Jong-Chul;Lee, Jong-Young;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • In this study, the effect of ground improvement was to be verified by granular compaction pile from the ground reclaimed with Fly Ash landfill site. The depth and strength parameters of the Fly ash layer was determined using the ground investigation and cone penetration test. And the STONE C program was used to predict the strength parameter, bearing capacity and settlement of the improved ground. As a result of the plate bearing test, the bearing capacity of improvement ground was higher than the design load and the settlement was smaller than the reference value. After the construction, the improvement effect by the cone penetration test was confirmed. The cone penetration resistance value($q_c$) increased by 250% to 500% and the effect was excellent.

A Study on the Increasement of Strength about Soft ground improvement material using waste residual by fire (소각잔재물을 활용한 연약지반개량재의 강도증진에 관한 연구)

  • Lee, Kwang-Joon;Lee, Jae-Yeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.692-697
    • /
    • 2004
  • This study is on the increasement of strength about soft ground improvement material using waste residual(paper fly ash, coke ash, slag) by fire. Through this study the authors have analyzed the strength improvement of mixed soft silty sand with improvement materials. The strength of mixed soils with high mixture ratio and more curing days increased. But CA-30(cokes 60%) make more low strength improvement than others. Therefore the authors find out that paper fly ash+cokes, paper fly ash+slag or cokes+slag improvement material is more effect in improvement of soft silty sand than cokes+cenlent. And Ettringite reaction is free mixed soils with more than two materials.

  • PDF

Case Studies on Ground Improvement by High Pressure Jet Grouting(I) Effect in the Improvement of Bearing Capacity for Foundation Ground (고압분사주입공법에 의한 지반개량사례연구(I) -구조물 기초지반의 지지력증대효과)

  • Yun, Jung-Man;Hong, Won-Pyo;Yu, Seung-Gyeong
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.33-46
    • /
    • 1996
  • When structures are constructed in ground with poor bearing capacity, deformation of ground may induce foundation settlements and cracks of structures. Recently, high pressure jet grouting is widely used to improve the engineering properties of such foundation. Sometimes, the grouting columns are built in the ground by jet grouting method. They are used as in -situ piles to increase the bearing capacity of existing foundation. In this paper, as for the grouting columns built in ground by high pressure jet grouting with double tube rod, the effects on reinforcement and bearing capacity of ground are investigated. A series of laboratory tests has been performed on the specimens sampled from the grouting columns and a pile load test has been performed on a grouting column. The test results show that high pressure jet grouting has a sufficient effect on reinforcement of ground and restraint of settlement of structure.

  • PDF

Analysis of Influence Parameters to Evaluate the Effective Depth of Improvement of Dynamic Compaction Method (동다짐 공법의 유효다짐깊이 결정에 영향을 주는 인자 분석)

  • Kim, Hong-Taek;Lee, Hyuk-Jin;Park, Inn-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.659-666
    • /
    • 2004
  • Dynamic compaction has evolved as an acceptable method of site improvement by treating poor soils in situ. The method is often an economical alternative for utilizing shallow foundations and preparing subgrades for construction when compared with conventional solutions. In general, the installation purpose of dynamic compaction are to increase bearing capacity and decrease differential settlement within a specified depth of improvement. This method involves the s systematically dropping large weights onto the ground surface to compact the underlying ground. The weights used on dynamic compaction projects have been typically constructed of steel plates, sand or concrete filled steel shells, and reinforced concrete. Typically, weights range from 5-20 ton and base configurations are, circular or octagonal. In this study, the effective depth of improvement is evaluated based on the numerical analysis code, the dynamic analysis of FLAC-3D program, in order to analyze the influence parameters ; ground conditions, maximum applied load and the area of compaction plate.

  • PDF

The Comparison of Using State of Greenery Space in Front of One Story Veranda in Apartment Complex (아파트 단지 1층 베란다 앞 녹지공간 사용실태 비교)

  • Kim, Dae-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 2000
  • Recently, the number of unsold apartments has been increasing, and apartment furnishing companies have tried a marketing strategy by utilizing the outdoor space for differentiation. There are many differentiation strategies. One of them is to improve the dwellings-on-ground space in apartment complex. Owing to the high density and high-rise of apartment buildings, the dwellings-on-ground apartment complex have been recognized as not good housing by residents in korea. The precedent study on the responses from residents showed the negative effects mainly due to sunlight, daylight, view and privacy and the positive effects from good accessibility and good environment for children and elderly people. The purpose of this study was to improve the dwellings-on-ground space and to suggest the most appropriate type of the dwellings-on-ground space through the residents' desires and preferences. In this point of view, this study shows three results for the design improvement: 1) Providing private gardens and individual accesses to the dwellings-on-ground. 2) Providing private garden with flower bed to intensify the visual aspect. 3) Furnishing variable transformation of unit plan in dwellings-on-ground, for example, maisonette, etc.

  • PDF

A Study on Character of Consolidation for Radial Drainage of Pohang배s Clay Ground (포항 점토 지반의 수평배수 압밀특성 연구)

  • Lee, Song;Jeon, Je-Sung;Kim, Won-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.685-692
    • /
    • 2000
  • Vertical drain used improvement soft clay is made of not only decreasing construction time but also increasing the ground strength during some decades. As, it is applied to improvement soft clay with vertical drain, it is designed by the result that is caused by oedemeter test ignored anisotropic of the ground related to consolidation conditions. When we are expected consolidation conditions, the most important factors is soil of compaction and water permeability. Above all, anisotropic of the ground permeability show the results which differ between vertical and radial drainage. Recently, We study for radial consolidation coefficient and permeability coefficient that utilized Rowe Cell Consolidation and permeability tester but, it dont use well because of not only a supply lack also difficulty of test. The paper experimented with searching anisotropic of the ground so there are Rowe Cell test, standard consolidation tester and modified standard consolidation test that have pohang's soft clay ground. Therefore, we find anisotropic of the ground and a tester of easy use more than before. We made a comparison test result between the devised tester and Rowe Cell tester, Also, we learned average degree of consolidation for partial penetrating vertical drains. We were found relations as effective stress-void and effective stress-permeability coefficient through those tests.

  • PDF

Design of Improved U-Slotted Patch Antennas with EBG Ground Plane (EBG(Electromagnetic Band-Gap) 접지면을 갖는 개선된 U-Slotted 패치 안테나의 설계)

  • Park, Jong-Hwan;Lim, Seong-Bin;Choi, Hak-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.304-310
    • /
    • 2008
  • Generally U-slotted patch antenna with PEC(Perfect Electric Conductor) ground plane is used for mobile telecommunication. However the improvement of the bandwidth is required to enlarge the capability of mobile telecommunication, In this paper, U-slotted patch antenna with EBG(Electromagnetic Band-Gap) ground plane is proposed to enlarge thr bandwidth and its radiation characteristics are investigated. To conform the bandwidth improvement, two kinds of U-slotted patch antennas with EBG and PEC ground plane are designed, fabricated, and radiation characteristics are measured. It is shown that the proposed antenna is wider than U-slotted patch antenna with PEC ground plane in bandwidth.

Present Condition and Direction of Improvement for Future Technology on the Prevention and Reclamation of Mining Induced Subsidences (지반침하 방지기술의 현황 및 발전방향)

  • Bang, Ki Mun
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.377-386
    • /
    • 2017
  • This study was carried out to predict the future technology on the prevention and reclamation of mining induced subsidences in Korea. We summarized the technical improvement of ground surveys and investigation, ground stability assessment, ground reinforcement, ground monitoring system and so on. It is essential to improve the technology that we try to collect and review all the data that is implemented on the site of mined area in Korea and collaborate all the members of public and private business sectors. We, also, try to expand our business area to related industry such as tunnelling, civil infrastructure, underground environmental assessment etc, and continue to develop oversea's market.

Characteristics of Bearing Capacity of Soft Ground Reinforced by Vertical Mat (연직 매트로 보강된 연약지반의 지지력 특성)

  • Shin, Eun-Chul;Lee, Gil-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.83-90
    • /
    • 2012
  • Generally, the effect of the cement deep mixing method on the improvement of clay ground is far greater than the effect of physical improvement. Although it leads to great improvement strength in the initial stage, there are not many constructional precedents in Korea and it is hard to manage quality according to the cement-clay mixing method. In order to figure out the strength characteristics according to the mixing ratio of cement, sand, and clay and the improvement characteristics of weak ground according to the forms of the specimens to be improved, marine clay was used in this study to conduct the uniaxial compression test and soil bin model test. The test piece specimens for the uniaxial compression test were mixed with sand in a fixed ratio with the criterion of the water cement ratio. The cement was mixed with clay in the ratios of 10%, 20%, 30%, and 40% to the clay weight. The moisture content of the soil ground was made in the ratios of 40%, 60%, and 80%. The test piece specimens went through curing by moistening for 7, 14, and 28 days and underwent the uniaxial compression test according to the curing period. For the bearing test, the soil bin models were made and the ground improved in the Mat type was formed. After that, the bearing strength was compared in this study according to the improvement ratio and analyzed the intervening effect between the walls of the improved specimens.

Ground Improvement under Ship Collision Protection of Myodo-Gangyang Suspension Bridge Concerning of Sedimental Condition in Gyangyang Bay (광양만 퇴적이력을 고려한 묘도-광양간 현수교 충돌방지공 하부 지반보강)

  • Chang, Yong-Chai;Yoon, Tae-Seob;Kim, Kyung-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.660-671
    • /
    • 2008
  • The suspension bridge between Myodo and Gwangyang is located in the main navigation channel to Gwangyang Harbor. So, there is need for the collision protection against large vessels. As ship collision protection, artificial island with concrete block quay wall is planned. The risk analysis and non-linear numerical analysis are introduced to consider the ship collision effects. In the Gwangyang bay area, there are some different sedimental conditions in clayey stratums. For a desirable design, we classify into four zones and 2 layers in each zone, and then determine suitable soil properties considering these zones. As a ground improvement under artificial island, DCM and SCP methods are Planned.

  • PDF