• Title/Summary/Keyword: Ground Filtering

Search Result 154, Processing Time 0.028 seconds

Identification of Structural Dynamic Systems (구조물의 동특성 추정방법에 관한 연구)

  • ;Shinozuka, Masanobu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.66-70
    • /
    • 1989
  • Methods for identification of modal properties of linear structures are presented. The extended Kalman filtering technique is empolyed. The state equation is formulated by two different ways, namely by the time domain and frequency domain approaches. Verifications are carried out by using simulated records of ground acceleration and structural response. Then the techniques are applied to the estimation of modal parameters of a scaled model for a 3-story building which is installed on a shaking table.

  • PDF

Three-Dimensional Positioning Using EROS A Stereo Pairs

  • Teo, Tee-Ann;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.606-608
    • /
    • 2003
  • This paper investigates the accuracy of three-dimensional positioning for EROS A stereo pairs when different numbers of ground control points are employed. The major works of the proposed schemes include: (1) initialization of orientation parameters (2) preliminary orbit fitting, (3) orbit refinement using the least squares filtering technique, and (4) space intersection. The experiment includes validation of positioning accuracy for an EROS A in-track stereo pair when different number of check points are employed.

  • PDF

Extracting Shadow area and recovering of image (영상의 그림자 영역 경계 검출 및 복원 연구)

  • Choi, Yun-Woong;Jeon, Jae-Yong;Park, Jung-Nam;Cho, Gi-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.169-173
    • /
    • 2007
  • Nowadays the aerial photos is using to get the information around our spatial environment and it increases by geometric progression in many fields. The aerial photos need in a simple object such as cartography and ground covey classification and also in a social objects such as the city plan, environment, disaster, transportation etc. However, the shadow, which includes when taking the aerial photos, makes a trouble to interpret the ground information, and also users, who need the photos in their field tasks, have restriction. This study, for removing the shadow, uses the single image and the image without the source of image and taking situation. Also, this study present clustering algorism based on HIS color model that use Hue, Saturation and Intensity, especially this study used I(intensity) to extract shadow area from image. And finally by filtering in Fourier frequency domain creates the intrinsic image which recovers the 3-D color information and removes the shadow.

  • PDF

Transformer-Less Single-Phase Four-Level Inverter for PV System Applications

  • Yousofi-Darmian, Saeed;Barakati, Seyed Masoud
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1233-1242
    • /
    • 2014
  • A new inverter topology for single-phase photovoltaic (PV) systems is proposed in this study. The proposed inverter offers a four-level voltage in its output terminals. This feature results in easier filtering in comparison with other conventional two-level or three-level inverters. In addition, the proposed four-level inverter (PFLI) has a transformer-less topology, which decreases the size, weight, and cost of the entire system and increases the overall efficiency of the system. Although the inverter is transformer-less, it produces a negligible leakage ground current (LGC), which makes this inverter suitable for PV grid-connected applications. The performance of the proposed inverter is compared with that of a four-level neutral point clamped inverter (FLNPCI). Theoretical analysis and computer simulations verify that the PFLI topology is superior to FLNPCI in terms of efficiency and suitability for use in PV transformer-less systems.

Development of the grounding monitoring system for intelligent buildings (정보화 건측물을 위한 접지감시시스템 개발)

  • Cha, Sung-Chul;Lee, Tae-Hyung;Earn, Ju-Hang
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.196-197
    • /
    • 2006
  • An effective method is described for monitoring the ground impedance of intelligent building and power system. Most of grounding system of buildings are interconnected to extensive grounding network of power line, signal and control line, telecommunication line, and etc. Therefore, the residual voltages of power frequency and its harmonics may have an significant influence on the accurate measurement of ground impedance. For eliminating the influence of residual voltage, we developed a test power source for generating the 110[Hz] square wave and used digital filtering method in this research.

  • PDF

Geometrical Comparisons between Rigorous Sensor Model and Rational Function Model for Quickbird Images

  • Teo, Tee-Ann;Chen, Liang-Chien
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.750-752
    • /
    • 2003
  • The objective of this investigation is to compare the geometric precision of Rigorous Sensor Model and Rational Function Model for QuickBird images. In rigorous sensor model, we use the on-board data and ground control points to fit an orbit; then, a least squares filtering technique is applied to collocate the orbit. In rational function model, we first use the rational polynomial coefficients provided by the satellite company. Then the systematic bias of the coefficients is compensated by an affine transformation using ground control points. Experimental results indicate that, the RFM provides a good approximation in the position accuracy.

  • PDF

A Segmented Morphology Filter for Airborne LiDAR Data (Airborne LiDAR 필터에 관한 연구)

  • Choi, Seung-Sik;Song, Nak-Hyeon;Cho, Woo-Sug
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.55-62
    • /
    • 2007
  • Recent advances in airborne LiDAR technology allow rapid and inexpensive measurements of topography over large areas. The generation of DTM/DEM is essential to numerous applications such as the fields of civil engineering, environment, city planning and flood modeling. The demand for LiDAR data is increasing due to the reduced cost for DTM generation and the increased reliability, precision and completeness. In order to generate DTM, measurements from non-ground features such as building and vegetation have to be classified and removed. In this paper, a segmented morphology filter was developed to detect non-ground LiDAR measurements. First, segments LiDAR point clouds based on the elevation. Secondly classifies those protruding segments into non-ground points. Those non-ground points such as building and vegetation are removed, while ground points are preserved for DTM generation. For experiments, data sets used in Comparison of Filters (ISPRS, 2003) depicting urban and rural areas were selected. The experimental results show that the proposed filter can remove most of the non-ground points effectively with less commission and omission errors.

An Efficient Filtering Technique of GPS Traffic Data using Historical Data (이력 자료를 활용한 GPS 교통정보의 효율적인 필터링 방법)

  • Choi, Jin-Woo;Yang, Young-Kyu
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.55-65
    • /
    • 2008
  • For obtaining telematics traffic information(travel time or speed in an individual link), there are many kinds of devices to collect traffic data. Since the GPS satellite signals have been released to civil society, thank to the development of GPS technology, the GPS has become a very useful instrument for collecting traffic data. GPS can reduce the cost of installation and maintenance in contrast with existing traffic detectors which must be stationed on the ground. But. there are Problems when GPS data is applied to the existing filtering techniques used for analyzing the data collected by other detectors. This paper proposes a method to provide users with correct traffic information through filtering abnormal data caused by the unusual driving in collected data based on GPS. We have developed an algorithm that can be applied to real-time GPS data and create more reliable traffic information, by building patterns of past data and filtering abnormal data through selection of filtering areas using Quartile values. in order to verify the proposed algorithm, we experimented with actual traffic data that include probe cars equipped with a built-in GPS receiver which ran through Gangnam Street in Seoul. As a result of these experiments, it is shown that link travel speed data obtained from this algorithm is more accurate than those obtained by existing systems.

  • PDF

Accuracy and Reliability of Ground Reaction Force System and Effect of Force Platform Mounting and Environment (지면반력장비의 정밀성, 신뢰도와 장비설치.사용 환경의 영향)

  • Park, Young-Hoon;Youm, Chang-Hong;Sun, Sheng;Seo, Kook-Woong;Kim, Eui-Hwan;Kim, Tae-Whan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Ground reaction force (GRF) measures are one of the most commonly used in biomechanical study. GRF system is very useful educational tool to explain and demonstrate the Newton's law of universal gravitation and laws of motion as well. However, accuracy, intra- and inter- force platform measures' consistency, reliability, noise, and the effect of platform mounting to GRF measures were not clearly viewed. The aim of this study was to examine the above. GRFs of a plastic dummy and two subjects' quiet upright standing were collected at four university laboratories eight force platforms. The types of platforms, analysis programs, and platform set-up were various. Three 100s-trials were conducted with sampling frequency of 100 Hz. First two trials' vertical component of GRFs, Fz, and CoP sway ranges of mid-60s-portion of 100s trials were analyzed by the paired t-tests and one-way ANOVA. Six of eight platforms' 1st and 2nd trial dummy Fz were statistically different (p<.05) and all platforms ICC were poor (<.28). Fz of the two platforms in every four laboratories were statistically different (p<.05). There were white noises and/or very distinctive noises at specific frequency ranges in all Fz measures. 5 Hz low-pass filtering made clear the Fz differences. CoP ranges of dummy were less than 0.5 cm and the best was 0.02 cm. This CoP range finding agrees with previous results suggests the importance of force platform mounting and A/D card resolution.

High-rate Single-Frequency Precise Point Positioning (SF-PPP) in the detection of structural displacements and ground motions

  • Mert Bezcioglu;Cemal Ozer Yigit;Ahmet Anil Dindar;Ahmed El-Mowafy;Kan Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.