• Title/Summary/Keyword: Grooves

Search Result 572, Processing Time 0.023 seconds

Numerical Optimization of a Transonic Axial Compressor with Casing Grooves for Improvement of Operating Stability (케이싱 그루브가 장착된 천음속 축류압축기의 작동 안정성 향상을 위한 수치최적화)

  • Kim, Jin-Hyuk;Choi, Kwang-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.31-38
    • /
    • 2011
  • Optimization using a hybrid multi-objective evolutionary algorithm coupled with response surface approximation has been performed to improve the performance of a transonic axial compressor with circumferential casing grooves. In order to optimize the operating stability and peak adiabatic efficiency of the compressor with circumferential casing grooves, tip clearance, angle distribution at blade tip and the depth of the circumferential casing grooves are selected as design variables. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations. The trade-off between two objectives with the interaction of blade and casing treatment is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the axial compressor without the casing treatment.

The Variation of the Wake behind a Circular Cylinder Having Arc Grooves (Groove에 의한 원주 후류의 유동구조 변화)

  • Seo, Seong-Ho;Hong, Cheol-Hyun;Boo, Jung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.901-907
    • /
    • 2008
  • The measurements of velocity vectors are made in the wake(X/d=8) of a circular cylinder with arc grooves. The experiments are conducted by changing the groove number. groove depth, Reynolds number(Re) and the angle of the first formed groove. We know that the optimum groove angle is 70 degree and the wake velocity profiles are improved at a few conditions. According to vortex shedding frequency distributions. the key solutions to vary the flow field behind the circular cylinder are 70 degree groove angle and more deeper grooves than 0.2mm depth.

The Influence of Liquid-Vapor Interactions on Friction in Micro-Channel Flow with Trapezoidal Grooves (사다리꼴 그루브를 갖는 미소 채널 내의 유동에서 기-액의 상호마찰의 영향)

  • Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.12-17
    • /
    • 2002
  • Abstract The flow of liquid and vapor is investigated in trapezoidal grooves. The effect of variable shear stress along the interface of the liquid and vapor is studied for both co-current and counter-current flows. Velocity contours and results for the friction are obtained for both trapezoidal grooves. An approximate relation that was previously utilized for the friction for the liquid was modified to obtain accurate agreement with the results for trapezoidal grooves.

A development of value protection cover as safty device in running water pipe ($\cdot$하수도관의 밸브 개폐통의 안전장치 개발)

  • 허성관;임승환;최종탁
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.267-270
    • /
    • 1998
  • Current valve protection cover had problem that the hight of cover cap and road level could not match when the road was repaired and overcovered. But new developed device can solve this problem by forming several grooves in the connecting pipe. This device is devided into col=netting pipe (down side) and cap part.(upper side) On the outside diameter of connecting pipe, several horizontal grooves and two vertical grooves are formed. Through the horizontal grooves, the hight of cap part ran be adjusted with ground level. Therefore, this device can help easy maintenence in running water pipe.

  • PDF

Drag Reduction Characteristics of Cylinder Having Square Dimpled Surface (표면에 정방형 딤플을 가진 원주의 항력저감 특성)

  • 노기덕;박지태;진윤식;여광수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.129-134
    • /
    • 2001
  • The drag reduction of the cylinder having square dimpled surface was studied by the measuring the drag force acting on the cylinder. The level of the drag reduction was changed by the arrangement shape of the square grooves and Reynolds number. The drag of the cylinder was reduced about 28% with proper arrangement of square grooves. The flow field around the cylinder having grooves at the minimum drag was visualized by using post color ink in order to see the influence of the grooves. In this case, the separation points were sifted rearward and the wake region was smaller than that of the smooth cylinder.

  • PDF

Drag Reduction Characteristics of Cylinder Having Square Dimpled Surface (표면에 정방형 딤플을 가진 원추의 항력저감 특성)

  • 노기덕;박지태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.233-239
    • /
    • 2002
  • The drag reduction of the cylinder having square dimpled surface was studied by the measuring the drag force acting on the cylinder. The level of the drag reduction was changed by the arrangement shape of the square grooves and Reynolds number. The drag of the cylinder was reduced about 28% with proper arrangement of square grooves. The flow field around the cylinder having grooves at the minimum drag was visualized by using post color ink in order to see the influence of the grooves. In this case, the separation points were silted rearward and the wake region was smaller than that of the smooth cylinder.

Investigation on the Off Design Performance of a Transonic Compressor with Circumferential Grooves

  • Zhu, Jianhong;Piao, Ying;Zhou, Jianxing;Qi, Xingming
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.66-71
    • /
    • 2008
  • Two cases with circumferential grooves were designed for a transonic compressor, and 3-D numerical simulations were conducted for stall mechanism at three representative speeds. A conclusion can be drawn from the comparison between compressors with or without casing treatment that: with the rising of rotation speed, stall margin increases dramatically under the help of casing treatments, and the case with middle grooves has reasonable compromise between stall margin increment and efficiency cutting. At lower speed, the increment reduces, and grooves at the back of blade tip have more influence on stall margin. Further investigation shows there is a transition in mechanism of compressor stall with the decline of rotational speed: at high rotation speed, the expansion of stall margin mainly results from the suppression of tip leakage vortex by casing treatments, yet it benefits more from the depression of boundary layer separation from suction surface of blade tip.

  • PDF

Modeling of the Formation of Long Grooves in the Seabed by Grounded Ice Keels

  • Marchenko, Aleksey
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.1-15
    • /
    • 2003
  • The motion of passively floating body, whose keel can have a contact with seabed soil, is under the consideration. The body simulates ice ridge floating in shallow water. The force of seabed soil reaction applied to the grounded keel is estimated taking into account soil embankment near the grounded keel. Two-dimensional trajectories of body motion, the shape of the grooves in seabed and the height of soil embankment are calculated when the motion of the body is caused by semidiurnal $M_2$ tide. The influence of wave amplitude and bottom slope on the shapes of body trajectory and the grooves are analyzed.

Study on the new development of combined electrochemical processes using pulse current (마이크로 펄스 전해 복합가공에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.918-921
    • /
    • 2002
  • Some investigators who have tried to achieve the highly smooth surface finish using electrochemical processes have reported that high current density produced lustrous surfaces while the opposite conditions produced a passive layer and had a tendency to produce a black surface. However, processing at a low current density may produce a non-lustrous surface but the improvement of dimensional accuracy of the surface is significant. The surface with pulse process was a bit more lustrous than with continuous current but the black passive layer still could be found at grooved surface. There are two ways to achieve highly smooth surface finish. One is brushing it with a brush the other is electrochemical machining (ECM) with high current. The former method is the most common polishing practice, but not only may the surface obtained differ from operator to operator, but precision smooth surface on micro grooves are difficult to obtain. The latter one recently has been used to produce a highly smooth surface after EDM process. However, the material removal rate in ECM with high current is relatively high. Hence the original shape of the micro grooves, which was formed by electrochemical micro-machining (EMM) process, may be destroyed. In this study, an electrochemical polishing process using pulse current is adopted as a possible alternative process when micro grooves formed by EMM process should be polished. Mirror-like micro grooves with lustrous and smooth surface can be produced electrochemically with pulse current because the voltage and current used can be lower than the case of continuous current. This study will discuss the accurate control of physical and electrical conditions so as to achieve mirror-like micro grooves with lustrous and smooth surface without destroying the original shape of micro grooves.

  • PDF

Improvement of Form Accuracy of Micro-Features on Thin, Large-area Plate using Fast Depth Adjustment in Micro-grooving (대면적 가공물의 마이크로 그루빙에서 고속 절삭 깊이 제어를 통한 미세형상의 정밀도 향상)

  • Kang, Dong Bae;Son, Seong Min;Lee, Hyo Ryeol;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.408-413
    • /
    • 2013
  • Micro-features such as grooves and lenses, which perform optical functions in flat displays, should be manufactured with a good form accuracy because this is directly related to their optical performance. As the size of the display increases, it is very difficult to maintain a high relative accuracy because of the inherent geometric errors such as the waviness of a large-area plate. In this paper, the optical effect of these geometric errors is investigated, and surface-referenced micro-grooving to measure and compensate for such geometric errors on line is proposed to improve the form accuracy of the micro-grooves. A PZT-based fast depth adjustment servo system is implemented in the tool holder to maintain a uniform groove depth in reference to the wavy surface. Through experiments, the proposed method is shown to be an efficient way to produce high-quality micro- grooves on a wavy die surface.