• Title/Summary/Keyword: GroES

Search Result 46, Processing Time 0.029 seconds

Enhancement of Soluble Expression of CGTase in E. coli By Chaperone Molecules and Low Temperature Cultivation. (대장균에서 chaperons 분자와 저온배양에 의한 CGTase의 가용성 발현 증대)

  • 박소림;김성구;권미정;남수완
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.121-125
    • /
    • 2004
  • The synergistic effect of lowered incubation temperature and CroEL/ES expression on the production of soluble form of B. macerans cyclodextrin glucanotransferase (CGTase) was studied in recombinant E. coli. pTCGTl and pGroll carrying the cgt and groEL/ES genes under the control of T7 promoter and pzt-I promoter, respectively, were co-introduced. Tetracycline (10 ng/ml) and IPTG (1 mM) were added at the early-exponential phase (2 hr) and mid-exponential phase (3 hr). Low temperature cultivation at $25^{\circ}C$ with groEL/ES expression improved the activity of CGTase by two fold, compared to $37^{\circ}C$ cultivation without chaperones. SDS-PACE analysis revealed that about 69% of CGTase in the total CGTase protein was found in the soluble fraction by overexpression of GroEL/ES and cultivation at$25^{\circ}C$, whereas 20% of CGTase was detected in the soluble fraction when E. coli was cultivated at $37^{\circ}C$ without chaperone. The amount of soluble CGTase from $25^{\circ}C$ culture with chaperone was 3.5-fold higher than that of $37^{\circ}C$ culture without chaperone. Therefore the expression of CroEL/ES and low temperature cultivation greatly enhanced the soluble production of CGTase in E. coli.

Proteomic analysis of heat-stable proteins in Escherichia coli

  • Kwon, Soon-Bok;Jung, Yun-A;Lim, Dong-Bin
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.108-111
    • /
    • 2008
  • Some proteins of E. coli are stable at temperatures significantly higher than $49^{\circ}C$, the maximum temperature at which the organism can grow. The heat stability of such proteins would be a property which is inherent to their structures, or it might be acquired by evolution for their specialized functions. In this study, we describe the identification of 17 heat-stable proteins from E. coli. Approximately one-third of these proteins were recognized as having functions in the protection of other proteins against denaturation. These included chaperonin (GroEL and GroES), molecular chaperones (DnaK and FkpA) and peptidyl prolyl isomerases (trigger factor and FkpA). Another common feature was that five of these proteins (GroEL, GroES, Ahpc, RibH and ferritin) have been shown to form a macromolecular structure. These results indicated that the heat stability of certain proteins may have evolved for their specialized functions, allowing them to cope with harsh environments, including high temperatures.

Production of Soluble Human Granulocyte Colony Stimulating Factor in E. coli by Molecular Chaperones

  • PARK SO-LIM;SHIN EUN-JUNG;HONG SEUNG-PYO;JEON SUNG-JONG;NAM SOO-WAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1267-1272
    • /
    • 2005
  • The effects of coexpression of GroEL/ES and DnaK/DnaJ/GrpE chaperones on the productivity of the soluble form of human granulocyte colony stimulating factor (hG-CSF) in E. coli were examined. Recombinant hG-CSF protein was coexpressed with DnaK/DnaJ/GrpE or GroEL/ES chaperones under the control of the araB or Pzt-1 promoter, respectively. The optimal concentration of L-arabinose for the expression of DnaK/DnaJ/GrpE was found to be 1 mg/ml. When L-arabinose was added at $OD_{600}$=0.2 (early-exponential phase), soluble hG-CSF production was greatly increased. In addition, it was observed that the DnaK/DnaJ/GrpE and GroEL/ES chaperones had no synergistic effects on preventing aggregation of hG-CSF protein. Consequently, by coexpression of the DnaK/DnaJ/GrpE chaperone, the signal intensity of the hG-CSF protein band in the soluble fraction of cell lysate was increased from $3.5\%\;to\;13.9\%$, and Western blot analysis also revealed about a 4-5-fold increase of production of soluble hG-CSF over the non-induction case of DnaK/DnaJ/GrpE.

Oligomeric Characterization of GroESLx Chaperonin from Symbiotic X-Bacteric in Amoeba proteus

  • Jung, Gwang-Hyun;Ahn, Tae-In
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.227-232
    • /
    • 2002
  • GroESLx proteins of symbiotic X-bacteria were overproduced in Escherichia coli and their structural characteristics were assayed after simple purification. The GroESx and GroELx were heat-stable at 8$0^{\circ}C$ and 5$0^{\circ}C$, respectively. After heat-treatment, GroESx was purified by DEAE Sephadex A-50 chromatography and GroELx was purified by step- and linear sucrose density gradient ultracentrifugation. Molecular masses of GroESx and GroELx were 50-80 kDa and 800 kDa, respectively, as estimated by sucrose density gradient ultracentrifugation. In chemical cross-linking analysis, subunits of GroESx were mostly cross-linked by incubation for 3 h in 0.4% glutaralde-hyde and GroESx was found to be composed of homo-heptamer subunits. Those of GroELx were cross-linked within 10 min in 0.3% glutaraldehyde and GroELx was in two stacks of homo-heptamer subunits. On the other hand, GroESx and GroELx proteins in a solution could not be cross-linked even after incubation for 3 h in 0.5% glutaraldehyde. GroELx was stable at 4-37$^{\circ}C$. In the presence of both GroESx and ATP, GroELx$_{14}$ was stable at 37$^{\circ}C$ but not at 4$^{\circ}C$ or 24$^{\circ}C$. Thus, we confirmed the oligomeric properties of GroESx$_{7}$ and GroELx$_{14}$ and their stability to heat and in the interaction with GroESx.x.

Chaperone Assisted Overexpression of D-carbamoylase Independent of the Redox State of Host Cytoplasm

  • Sareen, Dipti;Sharma, Rakesh;Vohra, Rakesh M.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.62-72
    • /
    • 2001
  • The N-carbamoyl-D-amino acid amidohydrolase (D-carbamoylase) gene (dcb) from Agrobacterium tumefaciens AM 10 has been successfully cloned and expressed in Escherichia coli. Expression of D-carbamoylase gene under the 17 promoter in different host strains showed that the optimal expression was achieved in E. coli JM109 (DE3) with a 9-fold increase in enzyme production compared to the wild-type strain. The co-expression of the GroEL/ES protein with D-carbamoylase protein caused an in vivo solubilization of D-carbamoylase in an active form. The synergistic effect of GroEL/ES at 28$^{\circ}C$ led to 60 % solubilization of the total expressed target protein with a 6.2-fold increase in enzyme activity in comparison to that expressed without GroEL/ES and 43-fold increase in enzyme activity compared to A. tumefaciens AM 10. Attempts to express D-carbamoylase in an altered redox cytoplasmic milieu did not improve the enzyme production in an active form. The Histidyl-tagged D-carbamoylase was purified in a single step by Nickel-affinity chromatography and was found to have a specific activity of 9.5 U/mg protein.

  • PDF

Detection of Antistaphylococcal and Toxic Compounds by Biological Assay Systems Developed with a Reporter Staphylococcus aureus Strain Harboring a Heat Inducible Promoter - lacZ Transcriptional Fusion

  • Chanda, Palas Kumar;Ganguly, Tridib;Das, Malabika;Lee, Chia Yen;Luong, Thanh T.;Sau, Subrata
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.936-943
    • /
    • 2007
  • Previously it was reported that promoter of groES-groEL operon of Staphylococcus aureus is induced by various cellwall active antibiotics. In order to exploit the above promoter for identifying novel antistaphylococcal drugs, we have cloned the promoter containing region ($P_g$) of groES-groEL operon of S. aureus Newman and found that the above promoter is induced by sublethal concentrations of many antibiotics including cell-wall active antibiotics. A reporter S. aureus RN4220 strain (designated SAU006) was constructed by inserting the $P_g$-lacZ transcriptional fusion into its chromosome. Agarose-based assay developed with SAU006 shows that $P_g$ in single-copy is also induced distinctly by different classes of antibiotics. Data indicate that ciprofloxacin, rifampicin, ampicillin, and cephalothin are strong inducers, whereas, tetracycline, streptomycin and vancomycin induce the above promoter weakly. Sublethal concentrations of ciprofloxacin and ampicilin even have induced $P_g$ efficiently in microtiter plate grown SAU006. Additional studies show for the first time that above promoter is also induced weakly by arsenate salt and hydrogen peroxide. Taken together, we suggest that our simple and sensitive assay systems with SAU006 could be utilized for screening and detecting not only novel antistaphylococcal compounds but also different toxic chemicals.

Enhanced Synthesis of Active rPA in the Continuous Exchange Cell-free Protein Synthesis [CECF] System utilizing Molecular Chaperones (분자 샤페론을 사용한 연속확산식 무세포단백질 발현 시스템에서의 재조합 Plasminogen Activator의 효율적 발현)

  • Park, Chang-Gil;Kim, Tae-Wan;Choi, Cha-Yong;Kim, Dong-Myung
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.118-122
    • /
    • 2006
  • In this report, we describe that the use of GroEL/GroES-enriched S30 extract remarkably enhances the solubility and enzymatic activity of cell-free synthesized rPA, which requires the correct formation of 9 disulfide bonds for its biological activity. We found that the stable maintenance of redox potential is necessary, but not sufficient for the optimal expression of active rPA. In a control reaction without using additional molecular chaperones, most of the rPA molecules were aggregated almost instantly after their expression and thus failed to exhibit the enzymatic activity. However, by the use of GroEL/GroES-enriched extract, combined with IAM-treatment, approximately $30{\mu}g/ml$ of active rPA was expressed in the cell-free synthesis reaction. This result not only demonstrates the efficient production of complex proteins, but also shows the control and flexibility offered by the cell-free protein synthesis system.

Abhangigkeit des Elutionsmaximums und der Halbwertsbreite vom Verteilungskoeffizient und der Saulenlange (분포계수와 컬럼길이에 대한 엘루션피이크 및 Halbwertsbreite의 의존성)

  • Dong Won Kim;Hai Il Ryu
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.405-410
    • /
    • 1983
  • Bei Verteilungskoeffizient-Werten von 1,3 bis 325 wurde eine lineare Abhangigkeit sowohol der Halbwertsbreite als auch des Elutionsmaximums vom Verteilungskoeffizient gefunden. Die Elutionsversuche an Natrium und Casium haben gezeigt, $da\beta$ eine lineare Abhangigkeit zwischen Sauleulange und Elutionsmaximum besteht. Dieses Verhalten konnte bei 30cm bis 540cm Saulenlange bestatigt werden. Es ist keine lineare Abhangigkeit zwischen Saulenlange und Halbwertsbreit. Es ist zu sehen, $da\beta$ die Halbwertsbreite mit $gro{\beta}er$ wendendem Saulenlange schwach abfallen. Das starkere Abbiegung der Halbwertsbreite bei wachsender Saulenlange fur Substanzen mit geringeren Verteilungskoeffizientunterschied weist auf eine deutliche Verbesserung der Trennung bei Verwendung von $gro{\beta}en$ Saulenlangen hin.

  • PDF