• Title/Summary/Keyword: Grinding force ratio

Search Result 28, Processing Time 0.025 seconds

Evaluation of Wheel Life by Grinding Ratio and Static Force

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1072-1077
    • /
    • 2002
  • A degree of sharpness in wheel grains affects the surface roughness and dimensional accuracy in the grinding process. If a wheel with dull grains is used, the grinding force is increased and the surface roughness is deteriorated. In ovder to produce a precision component economically, the magnitude of the wear amount in the grinding wheel has to be limited. In this study, experimental evaluation of a wheel life varying with the grinding ratio and static grinding force was conducted. The grinding ratio and grinding force were measured to seek the grinding performance of the WA wheel. The relationship between the grinding ratio and static grinding force was presented.

A Study on the Grinding Characteristics of Titanium Alloy (티타늄합금의 연삭특성에 관한 연구)

  • Kim, Sung Hun;Choi, Hwan;Lee, Jong Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6AI-4V). Grinding experiments were performed at various grinding conditions. The grinding forces were measured to investigate the grindability of titanium alloy with the five different wheels including Green carbide, Alumina, Resin Diamond, Resin CBN and Vitrified CBN. To investigate the grinding characteristics of titanium alloy grinding force, force ratio, specific grinding energy and grinding-ratio were measured. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM Residual stress measurement was conducted on the X-Ray Diffractometer. Force ratio of grinding of titanium alloy was very lower than that of grinding of SKD-11 Surface roughness with Resin Diamond wheel was a little larger and rougher surface than that with other wheels Grinding ratio of titanium alloy was a little lower than that of other materials. Grinding ratio of titanium alloy with Diamond wheel was almost six times larger than that With CBN wheel. As a result of five different wheels, the most excellent wheel in grinding of Titanium alloy was Resin Diamond wheel.

  • PDF

A Study on the Grinding of Titanium Alloy, Part2 : Grinding characteristics by using Superabrasives (티타늄 합금의 연삭에 관한 연구, Part2 : 초연마재를 사용한 연삭특성)

  • Kim, S. H.;Choi, H.;lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1076-1079
    • /
    • 2001
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6Al-4V). Grinding experiments were performed at various grinding conditions. The grinding forces and grinding force ratio were measured to investigate the grindability of titanium alloy with the Diamond and CBN wheel. To investigate the grinding characteristics of titanium alloy grinding force ratio and grinding ratio were measured. Surface profile of wheel was also measured with tracer and the ground surfaces and chip were observed with SEM. Grinding-ratio of titanium alloy was much lower than that of other materials. Grinding-ratio of titanium alloy with Diamond wheel was almost six times larger than that with CBN wheel.

  • PDF

A Study on the Grinding of Titanium Alloy Part 1 : Grinding force, Specific grinding energy, Surface roughness, G-ratio (티타늄 합금의 연삭에 관한 연구 Part 1: 연삭력, 비연삭에저니, 표면거칠기 , 연삭비)

  • Kim, S. H.;Lim, J. G.;Ha, S. B.;Choi, H.;lee, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.870-874
    • /
    • 2000
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6Al-4V). Grinding experiments were performed at various grinding conditions and the grinding forces and specific grinding energies were measured to investigate the grindability of titanium alloy with the three different wheels including Diamond, Green carbide and Alumina. To investigate the grinding characteristics of titanium alloy grinding force, force-ratio, specific grinding energy and grinding -ratio, were measured. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM. Force-ratio of grinding of titanium alloy was very lower than that of grinding of SKD-11. Specific grinding energy are almost five times larger and rougher surface was obtained in titanium grinding.

  • PDF

원통 플런지 연삭에서의 연삭력에 관한 연구

  • 박종찬;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.34-38
    • /
    • 1996
  • Cylindrical plunge grinding is widely used for final machining process of precision parts such as automobile, aircraft, measurement units. In order to make parts which have high precison accuracy and high surface integrity, it is neccessary to consider grinding characteristics. these grinding characteristics are closely related grinding force. Soin this study, to examine closely characteristics of grinding force, effects of dressing condition, depth of cut and speed ratio on grinding force are considered. As the result, It is shown that grinding forces are affected bydressing condition, depth of cut and speed ratio and that there exist threshod grinding force and it also affected by dressing conditon.

  • PDF

Evaluation on Grinding Force of Ceramic Grinding by the Diamond Wheel (다이아몬드 휠에 의한 세라믹 연삭의 연삭력 평가)

  • 문홍현;김성청;공재향;박병규;소의열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.43-47
    • /
    • 2002
  • In this study, through the experimental results of grinding ratio, grinding force and surface roughness with the obtained wear amount of diamond wheel and ceramic material during the grinding process, the following conclusions could be found. In the case of $Si_3N_4$, the wear of diamond wheel is large while the grinding force is stable and the range of change in surface roughness is small. for the case of $AL_2O_3$ and $ZrO_3$, while the wear of diamond wheel is getting smaller, the grinding force is increasing but the value of surface roughness is decreasing. For grinding with the vitrified bond wheel, it seems that the self-sharpening can be found for $Si_3N_4$ and the glazing effect of the cutting edge for $AL_2O_3$ and $ZrO_3$.

  • PDF

The Effect on the Machining Phenomenon due to the Change of the Quill Rigidity in a Side-Cut Grinding (측면 연삭가공에 있어서 퀄축강성변화가 가공현상에 미치는 현상)

  • 김창수;서영일;이종찬;정성환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.33-37
    • /
    • 1995
  • A side-cut grinding generates a machining error by the decrease of the quill rigidity. In this paper, The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity is investigated experimentally. The slenderness ratio of the quill is a significant factor to analyse the change of the grinding force and machining error.

  • PDF

Grinding Wheel Life in Surface Grinding (평면연삭에서의 연삭수명 평가)

  • Choi, S.S.;Koo, Y.;Heo, J.S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.101-108
    • /
    • 2002
  • In the grinding process, the degree of the sharpness in wheel gram affects the surface roughness and the dimensional accuracy. If a wheel with dull grains is used, the grinding force will be increased and the surface roughness deteriorated. To produce a precision component, the magnitude of parameters related to the wear amount of a grinding wheel has to be limited. In this study, a variation of the grinding force and the surface roughness were measured to seek the machining characteristics of the W A and CBN wheels. From the wear amount of the grinding wheel and the removal rate of workpiece, the grinding ratio was calculated. And also the wheel life was determined at a rapid decreasing point of the grinding ratio. The difference between the surface of wheel-workpiece before grinding and after wheel life was clearly verified with a microscopic photo.

  • PDF

Monitoring of Grinding Force in Plunge Grinding Process (원통 플런지 연삭시 연삭력에 관한 실험적연구)

  • Park, Jong-Chan;Park, Cheol-Woo;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.881-894
    • /
    • 1999
  • Cylindrical plunge grinding is widely used for final machining process of precision parts such as automobile, aircraft, measurement units. But in order to make parts which have high precision accuracy and high surface integrity, it is necessary to consider grinding characteristics due to accumulation phenomena of grinding wheel in plunge grinding process. In this study, in order to examine closely plunge grinding process, grinding power, grinding force, real depth of cut are monitored in transient state, steady state and spark out state. As the result, it is shown that grinding power and force are affected by dressing condition, depth of cut and speed ratio and that there exist threshold grinding force and it also affected by dressing condition. Also considered effects of grinding conditions on surface roughness and roundness of workpiece

A Study on the Surface Grinding using the Machining Center (I) (머시닝센터를 이용한 평면 연삭가공에 관한 연구(I))

  • Lee, Seung-Man;Seo, Young-Il;Choi, Hwan;Lee, Jong-Chan;Jung, Sun-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.862-865
    • /
    • 2000
  • The surface grinding of STD-11 was attempted on the machining center. Grinding experiments were performed at the various grinding conditions and the grinding force, machining error, grinding ratio, and surface roughness were measured. The experimental results indicate that the grinding ratio decreases as the table speed and depth of cut increase. The surface roughness of ground surface was not affected by the change of depth of cut. The surface roughness values obtained on the experiments were 0.02 ~ 0.03${\mu}{\textrm}{m}$ which are fairy good and acceptable for ground surface.

  • PDF