• Title/Summary/Keyword: Grinding Trouble

Search Result 20, Processing Time 0.019 seconds

A Study on the Grinding Trouble-Shooting Utilizing the Neural Network (Neural Network을 응용한 연삭가공 트러블 인식.처리에 관한 연구)

  • 하만경;김건희;곽재삼;송지복;이재경;김희술
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.113-117
    • /
    • 1995
  • Grinding operations is accomplished by rotating a gfinding wheel with lots of random abrasive at high speed, and its object is generally obtained the fanal workpiece surface of high quality as well as the maximization of workpiece removal rate. But, especiallysince grinding operations is related with a large amount of functional parameter, it is actually difficult to therapy that the grinding trouble occurs during the grinding process. Therefore, we trytodesign grinding trouble-shooting system utilizing the back-propagation model of neural network. The conceptual method is produced byidentifying the four parameters derived from the grinding power, and we are design te to the grinding trouble-shooting system on the basis of their data. In this paper, cognition and therapy method tothe grinding trouble which utilizes neural network based four identified models are suggested, and implementation results of computer simulation with respect to the grinding burn and chatter vibration is presented.

  • PDF

Basic Construction of Rule-Base for Grinding Trouble -shooting (연삭가공 트러블슈팅을 위한 룰베이스 구성의 기초)

  • 이재경
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.56-61
    • /
    • 2000
  • Cognition and control of grinding trouble occurring during the grinding process are classified into a quantitative knowledge which depends on experimental data and qualitative knowledge which relies on skilful engineers. Grinding operations include a large number of functional parameters, since there are several ways of coping with grinding trouble. One is the qualitative method which depends on empirical knowledge utilizing the skilful experts from the workship, the other is the quantitative method which utilizes the experimental data obtained by a sensor. But, they are all difficult to accomplish from the grinding trouble-shooting system. The reason is that grinding troubles are now easily controlled in the quantitative method, and therefore, trouble-shooting has mainly relied on the knowledge of skilful engineers. Thus, there is an important issue of how a grinding trouble-shooting system can be designed and what knowledge is utilized among the large amount of grinding trouble information. In this paper, basic strategy to develop the grinding database of rule-based model, which is strongly depended upon experience and intuition , is described.

  • PDF

Basic Construction of Rule-Base for Grinding Trouble-shooting (연삭가공 트러블슈팅을 위한 룰베이스 구성의 기초)

  • 이재경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.492-497
    • /
    • 1999
  • Cognition and control of grinding trouble occurring during the grinding process are classified into a quantitative knowledge which depends on experimental data and qualitative knowledge which relies on skillful engineers. Grinding operations include a large number of functional parameters, since there are several ways of coping with grinding trouble. One is the qualitative method which depends on empirical knowledge utilizing the skilful experts from the workshop, the other is the quantitative method which utilizes the experimental data obtained by sensor. But, they are all difficult to accomplish from the grinding trouble-shooting system. The reason is that grinding troubles are not easily controlled in the quantitative method, and therefore, trouble-shooting has mainly relied on the knowledge of skilful engineers. Thus, there is an important issue of how a grinding trouble-shooting system can be designed and what knowledge is utilized among the large amount of grinding trouble information. In this paper, basic strategy to develop the grinding database of rule-based rule, which is strongly depended upon experience and intuition, is described.

  • PDF

Production Rules Based on the Rule-Based Model for Grinding Trouble-shooting (연삭가공 트러블슈팅을 위한 룰베이스 룰의 구성)

  • Lee, Jae-Kyung;Kim, Gun-Hoi;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.106-112
    • /
    • 2000
  • Cognition and control of grinding trouble occurring during the grinding process are classified into a quantitative knowledge which depends on experimental data and qualitative knowledge which relies on skiful engineers. grinding operations include a large number of functional parameters since there are several ways of coping with ginding trouble. One is the qualitative method which depends on empirical knowledge utilizing the skilful experts from the workshop the other is the quantitative method which utilizes the experimental data obtained by sensor. But they are all difficult to accomplish from the grinding trouble-shooting system The reason is that grinding troubles are not accomplish from the grinding trouble-shooting system,. The rason is that grinding troubles are not easily controlled in the quantitative method and therefore trouble-shooting has mainly relied on the knoledge of skiful engineers. Thus there is an important issue of how a grinding touble-shooting system can be designed and what knowledge is utilized among the large amount of grinding trouble information. In this paper basic strategy to develop the grinding database by taking rule-based model which is strongly depended upon experience and intuition is described.

  • PDF

Detection of Grinding Troubles Utilizing a Neural Network (Neural Network을 이용한 연삭가공의 트러블 검지)

  • 곽재섭;송지복;김건희;하만경;김희술;이재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.131-137
    • /
    • 1994
  • Detection of grinding trouble occuring during the grinding process is classified into two types, i.e, based on the quantitative and qualitative knowledge. But, since the grinding operation is especially related with a large amount of functional parameters, it is actually defficult to cope with the grinding troubles occuring during process. Therefore, grinding trouble-shooting has difficulty in satisfying the requirement from the user. To cope with the grinding troubles occuring during the process, the application of neural network is on effective way. In this study, we identify the four parameters derived from the AE(Acoustic Emission) signals and present the grinding trouble-shooting system utilizing a back-propagation model of the neural network.

  • PDF

Monitoring Systems of a Grinding Trouble Utilizing Neural Networks(2nd Report) (신경망 회로를 이용한 연삭가공의 트러블 검지(II))

  • Kwak, J.S.;Kim, G.H.;Ha, M.K.;Song, J.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.57-63
    • /
    • 1996
  • Monitoring of grinding troble occurring during the process is classified into the quantitative data which depends upon a sensor and the qualitative knowledge which relies upon an empirical knowledge. Since grinding operation is highly related with a large amount of functional parameters, it is actually deficulty in copying wiht the grinding troubles through the process. To cope with grinding trouble, it is an effective monitoring systems when occurring the grinding process. The use of neural networks is an effective method of detection and/or monitroing on the grinding trouble. In this paper, four parameters which are derived from the AE(Acoustic Emission) signatures are identified, and grinding monitoring system utilized a back propagation learning algorithm of PDP neural networks is presented.

  • PDF

A Basic Study on the Monitoring of Grinding Burn by Grinding Power Signatures (연삭동력에 의한 Grinding Burn 검지를 위한 기초적 연구)

  • 김건희;이재경;안상욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.194-199
    • /
    • 1996
  • Grinding burn formed on the ground surface is related to the maximum temperature of workpiece surface and wheel temperature in the grinding process. The thermal characteristics of workpiece and grinding conditions on the surface temperature of the oxidation growing layer after get out of contact with the grinding wheel. The assumption used in grinding power signatures leads to the local temperature distribution between grinding wheel and workpiece, i.e., a single curve determines temperatures anywhere within the grinding wheel at anytime. This information is useful in the study of the grinding bum penetration into the wheel and thus provides an presentation of grinding trouble monitoring for the burning. On the basis of grinding power signatures in the wheel, thermally optimum conditions are defined and controlled. To cope with grinding burn, the use of grinding power signatures is an effective monitoring systems when occurring the grinding process. In this paper, the identified parameters suggested in this study which are derived from the grinding power signatures are presented.

  • PDF

A Study on the Monitoring System of the Grinding Troubles Utilizing Neural Networks(l) (신경회로망을 이용한 연삭가공의 트러블 인식에 관한 연구(I))

  • Ha, M.K.;Kwak, J.S.;Song, J.B.;Kim, G.H.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.149-155
    • /
    • 1996
  • Recent researches in the trouble monitoring system of grinding process have emphasized the use of deep knowledge. Such works include the monitoring and diagnostic systems for cylindrical grinding using sensors on chatter vibration and grinding burn during the process. But, since grinding operations are especially related with a lalrge amount of ambique parameters, it is effectively difficult to detect the grinding troubles occuring during the grinding process. In this paper, monitoring system for grinding utilizes the neural networks based on grinding power signatures. The monitoring system of grinding operations, which makes use of PDP neural networks, is presented. Then, the implementation results by computer simulations and experimental data with respect to chatter vibration and grinding burn are compared.

  • PDF

A Basic Study on the Monitoring of Grinding Burn by Grinding Power Signatures (연삭동력에 의한 Grinding Burn 검지를 위한 기초적 연구)

  • 이재경
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.18-26
    • /
    • 1997
  • Grinding burn formed on the ground surface is related to the maximum temperature of workpiece surface and wheel tempertaure in the grinding process. The thermal characteristics of workpiece and grinding conditions on the surface tempertaure of the oxidation growing layer after get out of contact with the grinding wheel. The assumption used in grinding power signatures leads to the local temperature distribution between grinding wheel and workpiece, i.e., a single curve determines temperatures anywhere within the grinding wheel at anytime. This information is useful in the study of the grinding burn penetration into the wheel and thus provides an presentation of grinding trouble monitoring for the burning. On the basis of grinding power signatures in the wheel, thermally optimum grinding conditions are defined and controlled. To cope with grinding burn, the use of grinding power signatures is an effective monitoring systems when occurring the grinding process. In this paper, the identified parameters suggested in this study which are derived from the grinding power signatures are presented, and prediction model by grinding power utilized a linear regression algorithm is applied.

  • PDF

Development of Intelligent Trouble-Shooting System for Grinding Operation (인공지능형 연삭가공 트러블 인식.처리 시스템 개발)

  • Ha, M.K.;Kwak, J.S.;Park, J.W.;Yoon, M.C.;Koo, Y.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 2000
  • The grinding process is very complex and relates many parameters to control the process. As this reason, a theoretical analysis and a quantitative estimation of the grinding process has not been well established. In this study, the in-process monitoring system was suggested by applying the neural network for monitoring and shooting the malfunction of cylindrical plunge grinding process. This system used the power signals from the electric power meter. This neural network was composed of processing elements [4-(5-5)-3] with 4 identified power parameters. Because sensitivity is blunted some minute vibration components, the simulation result of this system has appeared about 10% erroneous recognition in the uncertain pattern and the average success rate of the trouble recognition was about 90%. Consequently, the developed system, which applied to the power signals, can be recognize enough to monitor the grinding process as in-process.

  • PDF