• Title/Summary/Keyword: Grid-generated Flow

Search Result 126, Processing Time 0.03 seconds

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part II - Vulnerability Assessment for PM2.5 in the Schools (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part II - 학교 미세먼지 범주화)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1891-1900
    • /
    • 2021
  • Fine particulate matter (FPM; diameter ≤ 2.5 ㎛) is frequently found in metropolitan areas due to activities associated with rapid urbanization and population growth. Many adolescents spend a substantial amount of time at school where, for various reasons, FPM generated outdoors may flow into indoor areas. The aims of this study were to estimate FPM concentrations and categorize types of FPM in schools. Meteorological and chemical variables as well as satellite-based aerosol optical depth were analyzed as input data in a random forest model, which applied 10-fold cross validation and a grid-search method, to estimate school FPM concentrations, with four statistical indicators used to evaluate accuracy. Loose and strict standards were established to categorize types of FPM in schools. Under the former classification scheme, FPM in most schools was classified as type 2 or 3, whereas under strict standards, school FPM was mostly classified as type 3 or 4.

Buffeting Responses of Concrete Cable-stayed Bridge Considering Turbulent Characteristics of Bridge Site (현장 풍속 특성을 반영한 콘크리트 사장교의 버페팅 응답)

  • Kim, Sung-Ho;Yhim, Sung Soon;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.97-104
    • /
    • 2011
  • This study presents the aerodynamic admittance function of bridge girder under turbulent flow generated from wind velocity spectrum measured at bridge site. Three dimensional buffeting analysis of concrete cable-stayed bridge were performed considering aerodynamic admittance functions obtained from four different methods. It is revealed from the analysis that vertical buffeting responses considering proper aerodynamic admittance functions were just half of that neglecting aerodynamic admittance function. Grid turbulence was found to relatively lower the aerodynamic admittance function at low frequency range, and to underestimate the buffeting wind forces. It is recommended to use the aerodynamic admittance function evaluated from flutter derivatives or measured at active turbulence in order to properly predict the buffeting responses of bridges.

A Practice of Developing New Environment-friendly System by Composites

  • Kim, Yun-Hae;Yang, Dong-Hun;Jo, Young-Dae;An, Seung-Jun;Park, Se-Ho;Yoon, Sung-Won
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.8-14
    • /
    • 2010
  • This study intends to study about the blade performance loss occurred due to the variation in the shape of an airfoil from attachment/non-attachment of an erosion shield for the hovercraft. The model in this study has used NACA44XXseries, has designed NACA44XX-series by using the Auto CAD, and it designed the shape that has attached an erosion shield to this model according to the thickness and length. By using these models, a grid was generated by GAMBIT and the lift coefficient ($C_l$) and the drag coefficient ($C_d$) were calculated FLUENT code for flow analysis. Through this, the $C_l$ and $C_d$ have calculated and compared the lift-to-drag ratio that an indicator of airfoil performance according to the shape and attachment/non-attachment of erosion shield.

  • PDF

A Study on the Composite Blade Performance Variation by Attaching Erosion Shield for Hovercraft

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Moon, Kyung-Man;Bae, Chang-Won;Kang, Byong-Yun;Yang, Dong-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1017-1025
    • /
    • 2009
  • This study intends to study about the blade performance loss occurred due to the variation in the shape of airfoil from the attachment/non-attachment of blade erosion shield for hovercraft. This study model has used NACA 4412, has designed NACA 4412 by using Auto CAD and designed the shape that has attached an erosion shield to this model according to the thickness and length. By using these models, we have generated a grid by using GAMBIT and calculated the lift coefficient (Cl) and drag coefficient (Cd) by using the FLUENT code for flow analysis. Through this, we have calculated and compared the lift-to-drag ratio that is an indicator of airfoil performance according to the shape and attachment/non-attachment of erosion shield.

Performance Evaluation of a Thrust Reverser Using an Euler Solver (비장착 나셀의 역추력기 형상에 대한 3차원 Euler 유동해석)

  • Kim Soo Mi;Yang Soo Seok;Lee Dae Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • An Euler-based CFD tool has been developed for the performance evaluation of a thrust reverser mounted on a high bypass ratio turbofan engine. The computational domain surrounded by the ground and non-reflection boundary includes the whole nacelle configuration with a deployed thrust reverser. The numerical algorithm is based on the modified Godunovs scheme to allow the second order accuracy in both space and time. The grid system is generated by using eleven multi-blocks, of which the total cell number is 148,400. The thrust reverser is modeled as if it locates at the nacelle simply in all circumferential direction. The existence of a fan and an OGV(Outlet Guide Vane) is simulated by adopting the actuator disk concept, in which predetermined radial distributions of stagnation pressure ratio and adiabatic efficiency coefficient are used for the rotor type disk, and stagnation pressure losses and flow outlet angles for the stator type disk. All boundary conditions including the fan and OGV simulation are treated by Riemann solver. The developed solver is applied to a turbofan engine with a bypass ratio of about 5.7 and the diameter of the fan cowl of 83 inch. The computational results show that the Euler-based inviscid method is very useful and economical to evaluate the performance of thrust reversers.

  • PDF

Characteristics of Polymer irradiated by Low energy Ion Beam

  • sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.109-109
    • /
    • 1999
  • Recently, low energy ion beam irradiation has been adopted for surface modification. Low energy ion beam irradiation has many advantages in polymer engineering such as weak damage, good adhesion, noticeably-enhanced wettability(less than 15 degree), good reproducibility and so on. In this experiment, chemical reactions between free radicals and environment gas species have been investigated using angle-resolved XPS and TRIM code. In the case of low ion beam energy (around 1 keV), energy loss in polymer is mainly originated from atomic collisions instead of electronic interference. Atomic collisions could generated displaced atoms and free radicals. Cold cathode-ion source equipped with 5cm convex grid was used in an O2 environment. Base and working pressure were 5$\times$10-6 and 2.3$\times$10-4 Torr. Flow rates of argon and oxygen were fixed at 1.2 and 8 sccm. target materials are polyethylene polyvinyidenefluoride and polytetrafluoroethylene.

  • PDF

Aerodynamic Noise Analysis Using the Permeable Surface for UH-1H Rotor Blade in Hovering Flight Condition (UH-1H 로터 블레이드의 제자리 비행 시 투과면을 이용한 원방 소음 해석)

  • Kim, Ki Ro;Park, Min Jun;Park, Soo Hyung;Lee, Duck Joo;Park, Nam Eun;Im, Dong Kyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.376-384
    • /
    • 2018
  • The aerodynamic far-field noise was computed by an acoustic analogy code using the permeable surface for the UH-1H rotor blade in hover. The permeable surface surrounding the blade was constructed to include the thickness noise, the loading noise, and the flow noise generated from the shock waves and the tip vortices. The computation was performed with compressible three-dimensional Euler's equations and Navier-Stokes equations. The high speed impulsive noise was predicted and validated according to the permeable surface locations. It is confirmed that the noise source caused by shock waves generated on the blade surface is a dominant factor in the far-field noise prediction.

Viscous Flow Analysis around a Wind Turbine Blade with End Plate and Rake (풍력터빈 날개의 끝판과 레이크 효과에 대한 점성유동장 해석)

  • Kim, Ju-In;Kim, Wu-Joan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.273-279
    • /
    • 2011
  • Turbulent flow analysis around a wind turbine blade was performed to evaluate the power performance of offshore wind turbine. Fluent package was utilized to solve the Reynolds-averaged Navier-Stokes equations in non-inertial rotating coordinates. The realizable k-$\varepsilon$ model was used for turbulence closure and the grid system combining structured and unstructured grids was generated. In the first, lift and drag forces of 2-D foil section were calculated and compared with existing experimental data for the validation. Then torque and thrust of the wind turbine blade having NACA 4-series sections were calculated with fixed pitch angle and rpm. Tip speed ratio was varied by changing wind speed. In the next, three kinds of end plate were attached at the tip of blade in order to increase the power of the wind turbine. Among them the end plate attached at the suction side of the blade was found to be most effective. Furthermore, performance analysis with tilt angle and rake was also performed.

Analysis on Interaction of Regular Waves and a Circular Column Structure (전산유체역학을 이용한 규칙파와 원형 기둥 구조물의 상호작용 해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.63-75
    • /
    • 2017
  • In offshore environment, an accurate estimation of a wave-structure interaction has been an important issue for safe and cost effective design of fixed and floating offshore structures exposed to a harsh environment. In this study, a wave-structure interaction around a circular column was investigated with regular waves. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. Wave generation and absorption in the wave tank were activated by the relaxation method, which implemented in a source term. To validate the numerical methods, generated Stokes 2nd-order wave profiles were compared with the analytic solution with deep water condition. From the validation test, grid longitudinal and vertical sizes for wave length and amplitude were selected. The simulated wave run-up and wave loads on the circular column were studied and compared with existing experimental data.

Computational Analysis of Three-Dimensional Turbulent Flow Around Magnetically Levitated Train Configurations in Elevated Track Proximity (고가궤도에 근접한 자기부상열차 형상 주위의 3차원 난류유동에 대한 수치해석)

  • Maeng, J.S.;Yang, S.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.9-25
    • /
    • 1994
  • In the present study, the Reynolds-averaged Navier-Stokes equations, together with the equations of the $k-{\varepsilon}$ model of turbulence, were solved numerically in a general body-fitted coordinate system for three-dimensional turbulent flows around the six basic shapes of the magnetically levitated train(MAGLEV). The numerical computations were conducted on the MAGLEV model configurations to provide information on shapes of this type very near the elevated track at a constant Reynolds number of $1.48{\times}10^{6}$ based on the body length. The coordinate system was generated by numerically solving a set of Poisson equations. The convective transport equations were discretized using the finite-analytic scheme which employed analytic solutions of the locally-linearized equations. A time marching algorithm was employed to enable future extensions to be made to handle unsteady and fully-elliptic problems. The pressure-velocity coupling was treated with the SIMPLER-algorithm. Of particular interests were wall effect by the elevated track on the aerodynamic forces and flow characteristics of the six models calculated. The results indicated that the half-circle configuration with extended sides and with smooth curvature of sides was desirable because of the low aerodynamic forces and pitching moment. And it was found that the separation bubble was occured at wake region in near the elevated track.

  • PDF