• Title/Summary/Keyword: Grid-connected system

Search Result 846, Processing Time 0.023 seconds

Flood Runoff Simulation Using GIS-Grid Based K-DRUM for Yongdam-Dam Watershed (GIS격자기반 K-DRUM을 활용한 용담댐유역 홍수유출모의)

  • Park, Jin Hyeog;Hur, Young Teck;Ryoo, Kyong Sik;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.145-151
    • /
    • 2009
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. This research is to evaluate the feasibility of GIS based distributed model using radar rainfall which can express temporal and spatial distribution in actual dam watershed during flood runoff period. K-DRUM (K-water hydrologic & hydaulic Distributed flood RUnoff Model) which was developed to calculate flood discharge connected to radar rainfall based on long-term runoff model developed by Kyoto- University DPRI (Disaster Prevention Research Institute), and Yondam-Dam watershed ($930km^2$) was applied as study site. Distributed rainfall according to grid resolution was generated by using preprocess program of radar rainfall, from JIN radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of distributed model (K-DRUM). Results of this research can provide a base for building of real-time short-term rainfall runoff forecast system according to flash flood in near future.

Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators (풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Yoon, Yongbeum;Kim, Chan-Ki;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.

Analysis of Three Dimensional Liquid Ramjet Engine with Spray and Combustion (액체 램제트 엔진의 3차원 분무 및 연소 반응 해석)

  • 오대환;임상규;손창현;이충원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 1999
  • Liquid ramjet combustor is closely connected with complex phenomena due to a series of processes such as intake air, spray, mixing, and combustion. The present numerical experiments were peformed to investigate these flow characteristics for two and three dimensional liquid ramjet combustor. Grid system was made with three domains: intake region where air is supplied and fuel is injected, combustor and nozzle region, and exit atmosphere region. The numerical results showed that two and three dimensional flow patterns in recirculation region of combustor were significantly different each other and spray model was necessary to predict correctly the chemical reaction flow characteristics. Numerically examined for two different location of fuel injector, one is located on the bottom position of curved intake and the other is located on the top position. We found that bottom position of fuel injector is better than top position because fuel influx to the recirculation region which is need to sustain chemical reaction is more than the latter.

  • PDF

Effect of Interference from DC Power Supply on Power Line Communication Channel (전력선 통신 채널에서 직류전원 공급장치의 간섭 영향)

  • Kim, Sungeon;Jeon, Taehyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.111-115
    • /
    • 2014
  • Power line communications can be utilized to build up the data transmission network wherever the electricity is available. This type of communication system could provide a basis for the network construction in many application areas which include the smart grid and home networks. On the other hand the power line communication is vulnerable to various types of interferences and noises. Also, its channel characteristics are constantly changing depending on the type and the amount of electrical loads connected to the network. Especially, the usage of DC power supply has been increased due to the explosive expansion of smart devices in our daily lives which result in the increased level of interferences on the power line channel. In this paper, the effect of the operation of the DC power supplies on the channel characteristics and the data transmission performance is analyzed through the experiments.

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

A Study on the Change of Spatial Structures of Shared Space at Urban Campuses - The opposite concept of Gridlock upon the change to shared campuses - (도심 캠퍼스 공유공간의 공간 구조 변화에 대한 연구 - 그리드락의 반대 개념으로서의 공유 캠퍼스로의 변화에 대하여 -)

  • Kang, Eunki;Baek, Jin
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.145-156
    • /
    • 2018
  • Urban campus, one of the main urban facilities, is the representative place that is struggling with 'gridlock'. Due to privatization of space among different departments and space shortages, gridlock has been occurring as a result. The urban campus trying to solve this problem by changing the quality of space, especially the structure of the shared space, which is expected to be the solution to the grid lock problem. The main purpose of this study is to investigate the structural change in the university's shared space based on paradigm transition. The theoretical consideration is to analyze the spatial characteristics of university shared space that appear at different stages through a new perspective that compares the gridlock phenomenon and the shared paradigm. The framework of the analysis of the shared space, which has recently been restructured, is classified into the spatial characteristics of collaborative space, the creative space, and the common/complex space. In addition, these spatial characteristics are again analyzed through the division of legislative facility classification, management governance subject, area, building location and layout, exposure to the outside as well as the analysis of student and staff entry and exit, sharing structure of site and space, and the classification of program characteristics. The results are as follows: The restructured space is systemized so that the management governance of each space would be connected to each other to share information and space. Furthermore, the spatial boundary between colleges or between campus spaces are not only physically, but categorically clear. The restructured space has semi (or in-between)-spatial characteristics such as the intersection in inside and outside of the pedestrian's circulation and the mixture of programs. This study could serve as principal references in presenting the systematic analysis of directions of the shared spatial structure for the urban campus where new educational space is required due to the changes in the university system.

Optimal Design Method of 1-Port Surge Protective Device Based on Zinc Oxide Varistor (선화아연바리스터 기반의 1-포트 서지보호장치의 최적 설계 기법)

  • Jeong, Tae-Hoon;Kim, Young-Sung;Park, Geun-Bo;Lee, Seung-IL
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.93-102
    • /
    • 2018
  • This paper reports a Surge Protective Device (SPD) that is used to protect an automatic metering interface (AMI) power supplies of communication equipment on a low-voltage distribution system from a lightning current. The surge protective device (SPD) can be classified as one-port SPDs and two-port SPDs with decoupling elements depending on the connection type. The protection of internal systems against the lightning current may require a systematic approach consisting of coordinated SPDs. To deal with this, the definition of a lightning protection zone (LPZ) was studied and interpreted through a theoretical review. Because the lightning current resulting from a lightning surge is considerably high, there is limited protection from one SPD; therefore, coordinated cascaded MOV-based SPDs are installed to solve this problem. Regarding the power grid mentioned in this paper, a class II SPD for the low-voltage distribution system installed on the border of LPZ1 and LPZ2, which establish a protection coordination with the Arrester (LA, SA) that corresponds to the LPZO installed on the MOF stage connected to one system were designed to protect various communication (control) equipment, including the automatic meter reading system inside the branch-type electric supply panel of a building, not the incoming side of one system. In addition, performance-related tests were done by a comparison with the existing method through testing, and the optimal design was achieved for the 1-port SPD that uses a series connection and can bleed load current without any decoupling element.

Vector Control for Wave Power Generation System using Permanent Magnet Linear Synchronous Generator (파력발전용 선형발전시스템의 벡터제어)

  • Park, Joon Sung;Hyon, Byong Jo;Yun, Junbo;Lee, Ju;Choi, Jang-Young;Choi, Jong-Su;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.120-128
    • /
    • 2016
  • This paper describes power generation from sea waves by using linear permanent magnet generator. A buoy is placed on the ocean surface and connected to the generator. The wave energy is carried out from the movement of a buoy. An electrical conversion system is needed between the generator and the grid. For an analysis of the power system, the modeling of the linear generator and converter system was proceeded. This paper proposes vector control method for wave power generation system using linear generator. In order to verify the proposed method, simulation and experiment performed and the results support the validity of the control scheme.

A study on the voltage rise of the inverter output terminal according to the low voltage Grid connection of solar power generation (태양광발전 저압연계시 인버터 출력단 전압상승에 대한 연구)

  • Cho, Kang-yeon;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.746-752
    • /
    • 2020
  • As environmental issues have been taken seriously, the number of solar power generation facilities has rapidly increased in Korea. The voltage at the output stage of an inverter increases in a system that connects a small-capacity photovoltaic power generation to low-voltage power distribution. This degrades the quality of the low-voltage distribution system and adversely affects the load facility. In this study, a solution was obtained to increase the voltage at the output stage of the solar inverter according to the connection of the low-voltage distribution system. The voltage can be controlled by using reactive power factor control inverters. If the secondary tap is adjusted, the voltage can be adjusted to about 15 V, but there is a problem in that the tap is not adjusted unless the KEPCO distribution regulation voltage is out of the range of 220±13V. If the number of inverters is limited, the inverter can be started within the inverter overvoltage range. If it is connected to three phases, the voltage is distributed. The results indicated that power factor control and active voltage control inverters were easy to apply in the field.

A Fuel Cell Generation Modeling and Interconnected Signal Analysis using PSCAD/EMTDC (연료전지 발전시스템의 PSCAD/EMTDC 모델링 및 계통연계에 따른 전력신호 분석에 관한 연구)

  • Choi, Sang-Yule;Park, Jee-Woong;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.21-30
    • /
    • 2008
  • The fuel cell generation convert fuel source, and gas directly to electricity in an electro-chemical process. Unlike traditional and conventional turbine engines, the process of fuel cell generation do not burn the fuel and run pistons or shafts, and it has not revolutionary machine, so have fewer efficiency losses, low emissions and no noisy moving parts. A high power density allows fuel cells to be relatively compact source of electric power, beneficial in application with space constraints. In this system, the fuel cell itself is nearly small-sized by other components of the system such as the fuel reformer and power inverter. So, the fuel cell energy's stationary fuel cells produce reliable electrical power for commercial and industrial companies as well as utilities. In this paper, a fuel cell system has been modeled using PSCAD/EMTDC to analyze its electric signals and characteristics. Also the power quality of the fuel cell system has been evaluated and the problems which can be occurred during its operation have been studied by modeling it more detailed. Particularly, we have placed great importance on its power quality and signal characteristics when it is connected with a power grid.