• Title/Summary/Keyword: Grid-computing

Search Result 532, Processing Time 0.028 seconds

The development of parallel computation method for the fire-driven-flow in the subway station (도시철도역사에서 화재유동에 대한 병렬계산방법연구)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Park, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1809-1815
    • /
    • 2008
  • This experiment simulated the fire driven flow of an underground station through parallel processing method. Fire analysis program FDS(Fire Dynamics Simulation), using LES(Large Eddy Simulation), has been used and a 6-node parallel cluster, each node with 3.0Ghz_2set installed, has been used for parallel computation. Simulation model was based on the Kwangju-geumnan subway station. Underground station, and the total time for simulation was set at 600s. First, the whole underground passage was divided to 1-Mesh and 8-Mesh in order to compare the parallel computation of a single CPU and Multi-CPU. With matrix numbers($15{\times}10^6$) more than what a single CPU can handle, fire driven flow from the center of the platform and the subway itself was analyzed. As a result, there seemed to be almost no difference between the single CPU's result and the Multi-CPU's ones. $3{\times}10^6$ grid point one employed to test the computing time with 2CPU and 7CPU computation were computable two times and fire times faster than 1CPU respectively. In this study it was confirmed that CPU could be overcome by using parallel computation.

  • PDF

Location Service Modeling of Distributed GIS for Replication Geospatial Information Object Management (중복 지리정보 객체 관리를 위한 분산 지리정보 시스템의 위치 서비스 모델링)

  • Jeong, Chang-Won;Lee, Won-Jung;Lee, Jae-Wan;Joo, Su-Chong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.985-996
    • /
    • 2006
  • As the internet technologies develop, the geographic information system environment is changing to the web-based service. Since geospatial information of the existing Web-GIS services were developed independently, there is no interoperability to support diverse map formats. In spite of the same geospatial information object it can be used for various proposes that is duplicated in GIS separately. It needs intelligent strategies for optimal replica selection, which is identification of replication geospatial information objects. And for management of replication objects, OMG, GLOBE and GRID computing suggested related frameworks. But these researches are not thorough going enough in case of geospatial information object. This paper presents a model of location service, which is supported for optimal selection among replication and management of replication objects. It is consist of tree main services. The first is binding service which can save names and properties of object defined by users according to service offers and enable clients to search them on the service of offers. The second is location service which can manage location information with contact records. And obtains performance information by the Load Sharing Facility on system independently with contact address. The third is intelligent selection service which can obtain basic/performance information from the binding service/location service and provide both faster access and better performance characteristics by rules as intelligent model based on rough sets. For the validity of location service model, this research presents the processes of location service execution with Graphic User Interface.