• Title/Summary/Keyword: Grid-Cell

Search Result 622, Processing Time 0.036 seconds

DC Micro-Grid Operational Analysis with a Detailed Simulation Model for Distributed Generation

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon;Jeong, Yu-Seok;Yang, Hyo-Sik;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.350-359
    • /
    • 2011
  • This paper describes the operational analysis results of a DC micro-grid using a detailed model of distributed generation. A detailed model of wind power generation, photo-voltaic generation and fuel cell generation was implemented with an userdefined model created with PSCAD/EMTDC software and coded in C-language. The operational analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by a built-in model and the controller is modeled by an user-defined model that is also coded in C-language. Various simulation results confirm that a DC micro-grid can operate without any problems in both the grid-tied mode and in the islanded mode. The operational analysis results confirm that the DC micro-grid makes it feasible to provide power to the load stably. It can also be utilized to develop an actual system design.

An Application of Optimization method for Efficient Operation of Micro Grid (마이크로그리드의 효율적 운영을 위한 최적화기법의 응용)

  • Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.50-55
    • /
    • 2012
  • This paper presents an application of optimization method for efficient operation in micro grid. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The cost function of fuel cell plant considers the efficiency of fuel cell. Particle swarm optimization(PSO) and sequential quadratic programming(SQP) are used for solving the problem of microgrid system operation. Also, from the results this paper presents the way to attend power markets which can buy and sell power from upper lever grids by connecting a various generation resources to micro grid.

A Simple Volume Tracking Method For Compressible Two-Phase Flow

  • SHYUE KEH-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.237-241
    • /
    • 2001
  • Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the stability of the method is maintained by using a large time step wave propagation approach even in the presence of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical problems.

  • PDF

Optimal Operation Method of Microgrid System Using DS Algorithm (DS 알고리즘을 이용한 마이크로 그리드 최적운영기법)

  • Park, Si-Na;Rhee, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • This paper presents an application of Differential Search (DS) meta-heuristic optimization algorithm for optimal operation of micro grid system. DS algorithm has the benefit of high convergence rate and precision compared to other optimization methods. The micro grid system consists of a wind turbine, a diesel generator, and a fuel cell. The simulation is applied to micro grid system only. The wind turbine generator is modeled by considering the characteristics of variable output. One day load data which is divided every 20 minute and wind resource for wind turbine generator are used for the study. The method using the proposed DS algorithm is easy to implement, and the results of the convergence performance are better than other optimization algorithms.

TCP/IP communication between LabVIEW and C language for Smart Grid Monitoring System (C 언어로 구현된 스마트 그리드 모니터링 시스템을 위한 LabVIEW와 C 언어의 TCP/IP통신)

  • Kim, Jueun;Choi, Nam-Sup;Yang, Hyo-Sik;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.359-360
    • /
    • 2010
  • In smart grid system which uses photovoltaic system, fuel cells and so on, a program implemented with C language is used for control and measurement. When using programs implemented with C language GUI is difficult to watch control and monitor the smart grid system. But LabVIEW is a graphical programming language and it is easy to design GUI screen and to manage many variables such as real-time output of electric power including solar cell, wind power system and fuel cell. This paper suggests LabVIEW and C-language TCP/IP communication for smart grid monitoring system i mplemented with C-language.

  • PDF

Grid Cell Analysis using Species Diversity Index of Birds in the Northern Area of Yeongjong Island, Incheon, Korea (영종도 북부지역의 조류 종다양도를 이용한 격자별 공간 분석)

  • Kang, Jong-Hyun;Cho, Hang-Soo;Lee, Yun-Kyoung;Kim, Dong-Won;Kim, Chang-Hoe;Kim, Myungjin;Bae, Yang-Seop
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.649-664
    • /
    • 2012
  • The grid cell analysis is used to select good sites as habitats at the region. The northern area of Yeongjong Island, Incheon has been disturbing by habitat loss due to human activities such as residential development, deforestation. In order to determine significant places as bird habitats and to select conservation areas at this island, the study area was divided into 70 grid cells($500{\times}500m$ each grid) and then each grid was ranked by spatial analysis using the species diversity index. Fieldwork was carried out in Spring and Autumn of 2010. To examine grid cells which were ranked high in both seasons in common, we used the average ranking value, combined data from two seasons. This area consists of mainly agricultural areas and forests(more than 68%) among eight habitat types: the agricultural land, forest, coast, lake, meadow, stream, city and other things. A total of 110 species was recorded: 4,183 birds of 102 species in Spring and 3,326 birds of 58 species in Autumn. In other words, the number of individuals and species was higher in Spring than in Autumn. Species diversity index presented the highest value at M8 grid cell in Spring(3.380) and at A4 gird cell in Autumn(2.736). In 18 of 22 grid cells where the average ranking value was higher than 3, the forest was distributed and in 4 grid cells, the coast and wetland were widely distributed, in which theses were located apart from human-associated disturbances such as construction works for a leisure complex. Our results present a new estimate method not only to minimize loss of bird habitats but also to conserve important habitats when the large-scale development takes place at particular region.

Numerical Analysis of Free-Surface Flows Using Improved Adaptable Surface Particle Method Based on Grid System (개선된 격자기반 적합 표면입자법을 이용한 자유표면유동 수치해석)

  • Shin, Young-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.90-96
    • /
    • 2021
  • In this study, the method of determining the state of grid points in the adaptable surface particle method based on grid system developed as a free-surface tracing method was improved. The adaptable surface particle method is a method of determining the state of the grid point according to the shape of the free-surface and obtaining the intersection of the given free-surface and grid line where the state of the grid point changes. It is difficult to determine the state of grid points in the event of rapid flow, such as collision or separation of free-surfaces, and this study suggests a method for determining the state of current grid points using the state of surrounding grid points where the state of grid point are known. A grid layer value was assigned sequentially to a grid away from the free-surface, centering on the boundary cell where the free-surface exists, to identify the connection information that the grid was separated from the free-surface, and to determine the state of the grid point sequentially from a grid away from the free-surface to a grid close to the free-surface. To verify the improved method, a numerical analysis was made on the problem of dam break in which a sudden collision of free-surface occurred and the results were compared, and the results were relatively reasonable.

Numerical Simulation of Dam-Break Problem with Cut-cell Method (분할격자를 이용한 댐붕괴파의 수치해석)

  • Kim, Hyung-Jun;Yoo, Je-Seon;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF

Numerical Requirements for the Simulation of Detonation Cell Structures (데토네이션 셀 구조 모사를 위한 수치적 요구 조건)

  • Choi Jeong-Yeol;Cho Deok-Rae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-14
    • /
    • 2006
  • Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma} $ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.

A Proposal for Risk Evaluation Method of Slope Failure due to Rainfalls (강우 시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, Jong-Gil;Jung, Min-Su;Tori, Nobuyaki;Okimura, Takashi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.893-903
    • /
    • 2008
  • A method for predicting surface failures which occur during heavy rainfall on mountain slopes is proposed by using the digital land form model that is obtained by reading altitude on a topographical map at 10m grid point space. A depth of a potential failure layer is assumed at each grid point. In the layer, an infiltrated water movement from cell to cell is modeled in the study (cell is a square of the grid). Infiltrated ground water levels which show the three dimensional effects of a topographical factor in an area can be hourly calculated at every cell by the model. The safety factor of every cell is also calculated every hour by the infinite slope stability analysis method with the obtained infiltrated ground water level. Failure potential delineation is defined here as the time when the safety factor becomes less than unity under the assumptions that effective rainfall is 20mm/h and continues 20 hours.

  • PDF