• Title/Summary/Keyword: Grid search method

Search Result 161, Processing Time 0.03 seconds

A Study on De-Identification of Metering Data for Smart Grid Personal Security in Cloud Environment

  • Lee, Donghyeok;Park, Namje
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.263-270
    • /
    • 2017
  • Various security threats exist in the smart grid environment due to the fact that information and communication technology are grafted onto an existing power grid. In particular, smart metering data exposes a variety of information such as users' life patterns and devices in use, and thereby serious infringement on personal information may occur. Therefore, we are in a situation where a de-identification algorithm suitable for metering data is required. Hence, this paper proposes a new de-identification method for metering data. The proposed method processes time information and numerical information as de-identification data, respectively, so that pattern information cannot be analyzed by the data. In addition, such a method has an advantage that a query such as a direct range search and aggregation processing in a database can be performed even in a de-identified state for statistical processing and availability.

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

A Study on Prediction of Attendance in Korean Baseball League Using Artificial Neural Network (인경신경망을 이용한 한국프로야구 관중 수요 예측에 관한 연구)

  • Park, Jinuk;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.12
    • /
    • pp.565-572
    • /
    • 2017
  • Traditional method for time series analysis, autoregressive integrated moving average (ARIMA) allows to mine significant patterns from the past observations using autocorrelation and to forecast future sequences. However, Korean baseball games do not have regular intervals to analyze relationship among the past attendance observations. To address this issue, we propose artificial neural network (ANN) based attendance prediction model using various measures including performance, team characteristics and social influences. We optimized ANNs using grid search to construct optimal model for regression problem. The evaluation shows that the optimal and ensemble model outperform the baseline model, linear regression model.

Optimal Operation Method of Microgrid System Using DS Algorithm (DS 알고리즘을 이용한 마이크로 그리드 최적운영기법)

  • Park, Si-Na;Rhee, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.34-40
    • /
    • 2015
  • This paper presents an application of Differential Search (DS) meta-heuristic optimization algorithm for optimal operation of micro grid system. DS algorithm has the benefit of high convergence rate and precision compared to other optimization methods. The micro grid system consists of a wind turbine, a diesel generator, and a fuel cell. The simulation is applied to micro grid system only. The wind turbine generator is modeled by considering the characteristics of variable output. One day load data which is divided every 20 minute and wind resource for wind turbine generator are used for the study. The method using the proposed DS algorithm is easy to implement, and the results of the convergence performance are better than other optimization algorithms.

Efficient Integer pel and Fractional pel Motion Estimation on H.264/AVC (H.264/AVC에서 효율적인 정화소.부화소 움직임 추정)

  • Yoon, Hyo-Sun;Kim, Hye-Suk;Jung, Mi-Gyoung;Kim, Mi-Young;Cho, Young-Joo;Kim, Gi-Hong;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.16B no.2
    • /
    • pp.123-130
    • /
    • 2009
  • Motion estimation (ME) plays an important role in digital video compression. But it limits the performance of image quality and encoding speed and is computational demanding part of the encoder. To reduce computational time and maintain the image quality, integer pel and fractional pel ME methods are proposed in this paper. The proposed method for integer pel ME uses a hierarchical search strategy. This strategy method consists of symmetrical cross-X pattern, multi square grid pattern, diamond patterns. These search patterns places search points symmetrically and evenly that can cover the overall search area not to fall into the local minimum and to reduce the computational time. The proposed method for fractional pel uses full search pattern, center biased fractional pel search pattern and the proposed search pattern. According to block sizes, the proposed method for fractional pel decides the search pattern adaptively. Experiment results show that the speedup improvement of the proposed method over Unsymmetrical cross Multi Hexagon grid Search (UMHexagonS) and Full Search (FS) can be up to around $1.2{\sim}5.2$ times faster. Compared to image quality of FS, the proposed method shows an average PSNR drop of 0.01 dB while showing an average PSNR gain of 0.02 dB in comparison to that of UMHexagonS.

An Efficient Grid Method for Continuous Skyline Computation over Dynamic Data Set

  • Li, He;Jang, Su-Min;Yoo, Kwan-Hee;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • Skyline queries are an important new search capability for multi-dimensional databases. Most of the previous works have focused on processing skyline queries over static data set. However, most of the real applications deal with the dynamic data set. Since dynamic data set constantly changes as time passes, the continuous skyline computation over dynamic data set becomes ever more complicated. In this paper, we propose a multiple layer grids method for continuous skyline computation (MLGCS) that maintains multiple layer grids to manage the dynamic data set. The proposed method divides the work space into multiple layer grids and creates the skyline influence region in the grid of each layer. In the continuous environment, the continuous skyline queries are only handled when the updating data points are in the skyline influence region of each layer grid. Experiments based on various data distributions show that our proposed method outperforms the existing methods.

Performance Evaluation of DAR(Dynamic Adaptive Routing) and FSR(Flood Search Routing) Methods in a Common Channel Signaling Scheme (공통선 신호방식에서의 DAR(Dynamic Adaptive Routing)방식과 FSR(Flood Search Routing)방식의 성능평가)

  • 김재현;이종규
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.1-8
    • /
    • 1994
  • In this paper, we hve compare the performance of DAR(Dynamic Adaptive Routing) with that of FSR(Flooding Search Routing) to select an adequate routing protocol in circuit-switched networs. As a performance factor, we have considered call setup time, which is the key factor of performance evaluation in circuit switched networks. We have evaluated the performance of two methods in grid topology circuit-switched networks using a commn channel signaling scheme, as application examples. As results, FSR method shows better performance than DAR method under light traffic load, when the number of links by which call has passed increases, but DAR method represents better performance than FSR method under heavy traffic load or large networks because of redundant packets.

  • PDF

A Region Search Algorithm and Improved Environment Map Building for Mobile Robot Navigation

  • Jin, Kwang-Sik;Jung, Suk-Yoon;Son, Jung-Su;Yoon, Tae-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.1-71
    • /
    • 2001
  • In this paper, an improved method of environment map building and a region search algorithm for mobile robot are presented. For the environment map building of mobile robot, measurement data of ultrasonic sensors and certainty grid representation is usually used. In this case, inaccuracies due to the uncertainty of ultrasonic data are included in the map. In order to solve this problem, an environment map building method using a Bayesian model was proposed previously[5]. In this study, we present an improved method of probability map building that uses infrared sensors and shift division Gaussian probability distribution with the existing Bayesian update method using ultrasonic sensors. Also, a region search algorithm for ...

  • PDF

Parameter search methodology of support vector machines for improving performance (속도 향상을 위한 서포트 벡터 머신의 파라미터 탐색 방법론)

  • Lee, Sung-Bo;Kim, Jae-young;Kim, Cheol-Hong;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.329-337
    • /
    • 2017
  • This paper proposes a search method that explores parameters C and σ values of support vector machines (SVM) to improve performance while maintaining search accuracy. A traditional grid search method requires tremendous computational times because it searches all available combinations of C and σ values to find optimal combinations which provide the best performance of SVM. To address this issue, this paper proposes a deep search method that reduces computational time. In the first stage, it divides C-σ- accurate metrics into four regions, searches a median value of each region, and then selects a point of the highest accurate value as a start point. In the second stage, the selected start points are re-divided into four regions, and then the highest accurate point is assigned as a new search point. In the third stage, after eight points near the search point. are explored and the highest accurate value is assigned as a new search point, corresponding points are divided into four parts and it calculates an accurate value. In the last stage, it is continued until an accurate metric value is the highest compared to the neighborhood point values. If it is not satisfied, it is repeated from the second stage with the input level value. Experimental results using normal and defect bearings show that the proposed deep search algorithm outperforms the conventional algorithms in terms of performance and search time.

Hyperparameter Tuning Based Machine Learning classifier for Breast Cancer Prediction

  • Md. Mijanur Rahman;Asikur Rahman Raju;Sumiea Akter Pinky;Swarnali Akter
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.196-202
    • /
    • 2024
  • Currently, the second most devastating form of cancer in people, particularly in women, is Breast Cancer (BC). In the healthcare industry, Machine Learning (ML) is commonly employed in fatal disease prediction. Due to breast cancer's favorable prognosis at an early stage, a model is created to utilize the Dataset on Wisconsin Diagnostic Breast Cancer (WDBC). Conversely, this model's overarching axiom is to compare the effectiveness of five well-known ML classifiers, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and Naive Bayes (NB) with the conventional method. To counterbalance the effect with conventional methods, the overarching tactic we utilized was hyperparameter tuning utilizing the grid search method, which improved accuracy, secondary precision, third recall, and finally the F1 score. In this study hyperparameter tuning model, the rate of accuracy increased from 94.15% to 98.83% whereas the accuracy of the conventional method increased from 93.56% to 97.08%. According to this investigation, KNN outperformed all other classifiers in terms of accuracy, achieving a score of 98.83%. In conclusion, our study shows that KNN works well with the hyper-tuning method. These analyses show that this study prediction approach is useful in prognosticating women with breast cancer with a viable performance and more accurate findings when compared to the conventional approach.