• Title/Summary/Keyword: Grid generation

Search Result 1,136, Processing Time 0.028 seconds

Incomplete 2-manifold Mesh Based Tool Path Generation (불완전한 2차원다양체 메시기반 공추경로생성)

  • Lee Sung-gun;Kim Su-jin;Yang Min-yang;Lee Dong-yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.447-454
    • /
    • 2005
  • This paper presents a new paradigm for 3-axis tool path generation based on an incomplete 2-manifold mesh model, namely, an inexact polyhedron. When geometric data is transferred from one system to another system and tessellated for tool path generation, the model does not have any topological data between meshes and facets. In contrast to the existing polyhedral machining approach, the proposed method generates tool paths from an incomplete 2-manifold mesh model. In order to generate gouge-free tool paths, CL-meshes are generated by offsetting boundary edges, boundary vertices, and facets. The CL-meshes are sliced by machining planes and the calculated intersections are sorted, trimmed, and linked. The grid method is used to reduce the computing time when range searching problems arise. The method is fully implemented and verified by machining an incomplete 2-manifold mesh model.

The long-term operating evaluation of the grid connected photovoltaic system (중규모 태양광발전시스템 장기 실증운전 평가)

  • Kim, Eui-Hwan;Ahn, Kyo-Sang;Lim, Hee-Chun
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.14-19
    • /
    • 2009
  • The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 10 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 41.9 MWh in 2008. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 9.6% in 2008. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 10 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.

Factors Influencing Critical Clearing Time in Network Connected to Wind Generation System (풍력발전시스템이 연계된 계통의 임계 제거시간에 미치는 요인)

  • Kim, Se-Ho;Kim, Ho-Chan;Yang, Ik-June
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.41-46
    • /
    • 2006
  • Generation of electricity using wind power has received considerable attention worldwide in recent years. In order to investigate the impacts of the integration of wind farm into utilities' network, various studies have been investigated. One such impact is related to the Critical Clearing Time (CCT) of wind power generation system. This paper reports investigation into the factors that influence the transient behavior of the wind power generation system following network fault conditions. It is shown that CCT can be affected by various factors contributed by the network. Such factors include capacity of wind power, power factor, the length of the interfacing line, etc. This investigation is conducted on a simulated grid-connected wind farm using Digsilent Power Factory.

PV Power Prediction Models for City Energy Management System based on Weather Forecast Information (기상정보를 활용한 도시규모-EMS용 태양광 발전량 예측모델)

  • Eum, Ji-Young;Choi, Hyeong-Jin;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.393-398
    • /
    • 2015
  • City or Community-scale Energy Management System(CEMS) is used to reduce the total energy consumed in the city by arranging the energy resources efficiently at the planning stage and controlling them economically at the operating stage. Of the operational functions of the CEMS, generation forecasting of renewable energy resources is an essential feature for the effective supply scheduling. This is because it can develop daily operating schedules of controllable generators in the city (e.g. diesel turbine, micro-gas turbine, ESS, CHP and so on) in order to minimize the inflow of the external power supply system, considering the amount of power generated by the uncontrollable renewable energy resources. This paper is written to introduce numerical models for photo-voltaic power generation prediction based on the weather forecasting information. Unlike the conventional methods using the average radiation or average utilization rate, the proposed models are developed for CEMS applications using the realtime weather forecast information provided by the National Weather Service.

Overvoltage Protection Controller Design of Distributed Generation Connected to Power Grid Considering Islanding Condition

  • Cha, Jae-Hun;Park, Kyung-Won;Ahn, Hong-Seon;Kwon, Kyoung-Min;Oh, Jin-Hong;MAHIRANE, Philemon;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.599-607
    • /
    • 2018
  • Distributed generation (DG) is being highlighted as an alternative for future power supplies, and the number of DG systems connected to conventional power systems is steadily increasing. DG generators are designed using power electronics and can give rise to various power quality problems, such as overvoltage or overcurrent. Particularly, unintentional islanding operation can occur in a conventional power system when the power grid is separated from the DG systems. Overvoltage may occur in this situation, depending on the power generation and power consumption. However, overvoltage phenomena might not happen even when islanding occurs. Therefore, it is necessary to analyze the fault characteristics during islanding. In this study, a fault analysis of islanding operation was carried out using PSCAD/EMTDC, and a countermeasure for the overvoltage problem is proposed.

Dynamic Reserve Estimating Method with Consideration of Uncertainties in Supply and Demand (수요와 공급의 불확실성을 고려한 시간대별 순동예비력 산정 방안)

  • Kwon, Kyung-Bin;Park, Hyeon-Gon;Lyu, Jae-Kun;Kim, Yu-Chang;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1495-1504
    • /
    • 2013
  • Renewable energy integration and increased system complexities make system operator maintain supply and demand balance harder than before. To keep the grid frequency in a stable range, an appropriate spinning reserve margin should be procured with consideration of ever-changing system situation, such as demand, wind power output and generator failure. This paper propose a novel concept of dynamic reserve, which arrange different spinning reserve margin depending on time. To investigate the effectiveness of the proposed dynamic reserve, we developed a new short-term reliability criterion that estimates the probability of a spinning reserve shortage events, thus indicating grid frequency stability. Uncertainties of demand forecast error, wind generation forecast error and generator failure have been modeled in probabilistic terms, and the proposed spinning reserve has been applied to generation scheduling. This approach has been tested on the modified IEEE 118-bus system with a wind farm. The results show that the required spinning reserve margin changes depending on the system situation of demand, wind generation and generator failure. Moreover the proposed approach could be utilized even in case of system configuration change, such as wind generation extension.

An Optimization Method for Hologram Generation on Multiple GPU-based Parallel Processing (다중 GPU기반 홀로그램 생성을 위한 병렬처리 성능 최적화 기법)

  • Kook, Joongjin
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2019
  • Since the computational complexity for hologram generation increases exponentially with respect to the size of the point cloud, parallel processing using CUDA and/or OpenCL library based on multiple GPUs has recently become popular. The CUDA kernel for parallelization needs to consist of threads, blocks, and grids properly in accordance with the number of cores and the memory size in the GPU. In addition, in case of multiple GPU environments, the distribution in grid-by-grid, in block-by-block, or in thread-by-thread is needed according to the number of GPUs. In order to evaluate the performance of CGH generation, we compared the computational speed in CPU, in single GPU, and in multi-GPU environments by gradually increasing the number of points in a point cloud from 10 to 1,000,000. We also present a memory structure design and a calculation method required in the CUDA-based parallel processing to accelerate the CGH (Computer Generated Hologram) generation operation in multiple GPU environments.

An Investigation of the Connectivity between Combined Heat and Power and Smart Grid Technologies (열병합발전과 스마트 그리드 기술과의 연계성 검토)

  • Kim, Won-Gi;Seo, Hun-Cheol;Lee, Je-Won;Kim, Cheol-Hwan;Kim, Yong-Ha;Kim, Ui-Gyeong;Son, Hak-Sik;Kim, Gil-Hwan
    • 전기의세계
    • /
    • v.60 no.11
    • /
    • pp.56-63
    • /
    • 2011
  • In the face of global warming and resource depletion, a smart grid has been suggested as one way of contributing to abating the environment problems and increasing energy efficiency. Smart grids utilize renewable energy which has intermittent and irregular output power depending on weather conditions. In order to maintain stability and reliability of the power system, smart grids need to have complementary measures for the possible unstable system conditions. Cogenerating systems such as Combined Heat and Power(CHP) can be one good solution as it has capability of instantly increasing or decreasing output power. Therefore, this paper investigates the connectivity between Combined Heat and Power systems and smart grid technologies. The smart grid national roadmap formulated by South Korea Ministry of Knowledge and Economy and 'IEC Smart Grid Standardization Roadmap' are analyzed to extract related components of the smart grid for the CHP connection. Also, case studies on demonstration projects for smart grids with CHP systems completed or currently being implementing in the world are presented.

  • PDF

Review of Operational Multi-Scale Environment Model with Grid Adaptivity

  • Kang, Sung-Dae
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_1
    • /
    • pp.23-28
    • /
    • 2001
  • A new numerical weather prediction and dispersion model, the Operational Multi-scale Environment model with Grid Adaptivity(OMEGA) including an embedded Atmospheric Dispersion Model(ADM), is introduced as a next generation atmospheric simulation system for real-time hazard predictions, such as severe weather or the transport of hazardous release. OMEGA is based on an unstructured grid that can facilitate a continuously varying horizontal grid resolution ranging from 100 km down to 1 km and a vertical resolution from 20 -30 meters in the boundary layer to 1 km in the free atmosphere. OMEGA is also naturally scale spanning and time. In particular, the unstructured grid cells in the horizontal dimension can increase the local resolution to better capture the topography or important physical features of the atmospheric circulation and cloud dynamics. This means the OMEGA can readily adapt its grid to a stationary surface, terrain features, or dynamic features in an evolving weather pattern. While adaptive numerical techniques have yet to be extensively applied in atmospheric models, the OMEGA model is the first to exploit the adaptive nature of an unstructured gridding technique for atmospheric simulation and real-time hazard prediction. The purpose of this paper is to provide a detailed description of the OMEGA model, the OMEGA system, and a detailed comparison of OMEGA forecast results with observed data.

  • PDF

Equivalent Grid Impedance Estimation Method Using Negative Sequence Current Injection in Three-Phase Grid-connected Inverter (3상 계통 연계형 인버터의 역상분 전류 주입을 이용한 계통 등가 임피던스 추정 기법)

  • Park, Chan-Sol;Song, Seung-Ho;Im, Ji-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2015
  • A new algorithm is proposed for the estimation of equivalent grid impedance at the point of common coupling of a grid-tie inverter output. The estimated impedance parameter can be used for the improvement of the performance and the stability of the distributed generation system. The estimation error is inevitable in the conventional estimation method because of the axis rotation due to PLL. In the conventional estimation error, the d-q voltage and current are used for the calculation of the impedance with active and reactive current injections. Conversely, in the proposed algorithm, the negative sequence current is injected, and then the negative sequence voltage is measured for the impedance estimation. As the positive and negative sequence current controller is independent and the PLL is based on the positive sequence component only, the estimation of the equivalent impedance can be achieved with high accuracy. Simulation and experimental results are compared to validate the proposed algorithm.