A new system for evaluating the voltage management errors of distribution equipment is presented in this paper. The main concept of the new system is to use real distribution live-line voltage to evaluate and correct the voltage measurement data from distribution equipment. This new approach is suitable for a new Distribution Management System (DMS) which has been developed for a distribution power system due to the connection of distributed generation growth. The data from distribution equipment that is installed at distribution lines must be accurate for the performance of the DMS. The proposed system is expected to provide a solution for voltage measurement accuracy assessment for the reliable and efficient operation of the DMS. An experimental study on actual distribution equipment verifies that this voltage measurement accuracy assessment system can assess and calibrate the voltage measurement data from distribution equipment installed at the distribution line.
Sheng Cao;Yaling Zhang;Shengping Yan;Xiaoxuan Qi;Yuling Li
Journal of Information Processing Systems
/
제19권2호
/
pp.258-266
/
2023
Aiming at the problems of poor customer satisfaction and poor accuracy of customer classification, this paper proposes a customer classification model based on speech recognition. First, this paper analyzes the temporal data characteristics of customer demand data, identifies the influencing factors of customer demand behavior, and determines the process of feature extraction of customer voice signals. Then, the emotional association rules of customer demands are designed, and the classification model of customer demands is constructed through cluster analysis. Next, the Euclidean distance method is used to preprocess customer behavior data. The fuzzy clustering characteristics of customer demands are obtained by the fuzzy clustering method. Finally, on the basis of naive Bayesian algorithm, a customer demand classification model based on speech recognition is completed. Experimental results show that the proposed method improves the accuracy of the customer demand classification to more than 80%, and improves customer satisfaction to more than 90%. It solves the problems of poor customer satisfaction and low customer classification accuracy of the existing classification methods, which have practical application value.
Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes a service prediction-based job scheduling model and present its scheduling algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts the next processing time of each processing component and distributes a job to a processing component with minimum processing time. This paper implements the job scheduling model on the DEVS modeling and simulation environment and evaluates its efficiency and reliability. Empirical results, which are compared to conventional scheduling policies, show the usefulness of service prediction-based job scheduling.
Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes the service prediction-based job scheduling model and present its algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts a processing time of each processing component and distributes a job to processing component with minimum processing time. This paper implements the job scheduling model on the DEVSJAVA modeling and simulation environment and simulates with a case study to evaluate its efficiency and reliability Empirical results, which are compared to the conventional scheduling policies such as the random scheduling and the round-robin scheduling, show the usefulness of service prediction-based job scheduling.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권4호
/
pp.1404-1423
/
2015
In smart grid, electricity consumption data may be handed over to a third party for various purposes. While government regulations and industry compliance prevent utility companies from improper or illegal sharing of their customers' electricity consumption data, there are some scenarios where it can be very useful. For example, it allows the consumers' data to be shared among various energy resources so the energy resources are able to analyze the data and adjust their operation to the actual power demand. However, it is crucial to protect sensitive electricity consumption data during the sharing process. In this paper, we propose a fine-grained access control scheme (FAC) with efficient attribute revocation and policy updating in smart grid. Specifically, by introducing the concept of Third-party Auditor (TPA), the proposed FAC achieves efficient attribute revocation. Also, we design an efficient policy updating algorithm by outsourcing the computational task to a cloud server. Moreover, we give security analysis and conduct experiments to demonstrate that the FAC is both secure and efficient compared with existing ABE-based approaches.
An electric vehicle (EV) not only receives electric power from the electric vehicle supply equipment (EVSE), but it also exchanges the information regarding charging process with the power gird through the EVSE. However, the EV and EVSE communicate using the ISO/IEC 15118 standard while the EVSE and power grid communicate using the IEC 61850 standard. Therefore, the EVSE should support both the ISO/IEC 15118 and IEC 61850 standards, and provide a data mapping function between the two communication protocols so that the EV and power grid, which support different protocols, can communicate with each other throughout the charging process. In this paper, we propose a mapping method of the EVSE, which converts the ISO/IEC 15118 data to IEC 61850 and vice versa, based on the XML schema of each protocol. The proposed method converts the data using the XSL (eXtensible Stylesheet Language) method, which defines the data mapping between two XML schemas. Our approach is more flexible and easier to maintain against changes in charging scenarios and the standards than other existing approaches such as one-to-one data mapping methods.
기술의 진화와 함께, 사이버 물리 시스템(Cyber Physical System)은 향상되고 있고 이에 따라 새로운 유형의 사이버 공격도 발견되고 있다. 사이버 공격에는 여러 가지 형태가 있으며 모든 사이버 공격은 대상 시스템을 조작하기 위해 이루어진다. 사이버 물리시스템 중 대표적인 시스템이 사이버 물리 전력 시스템, 즉 스마트 그리드이다. 스마트 그리드는 신뢰할 수 있고 안전하며 효율적인 에너지 전송 및 분배를 제공하는 새로운 유형의 전력망이다. 본 논문에서는 스마트 그리드의 상태 추정과 에너지 분배를 타깃으로 하는 허위 데이터 주입 공격(False Data Injection Attack)으로 잘 알려진 특정 유형의 사이버 공격 구성 방법과 이러한 공격의 방어를 위한 보호 전략과 탐지를 위한 동적 모니터링 기법을 소개한다.
본 연구의 목적은 간단한 입력자료로 정확한 홍수해석을 수행할 수 있는 2차원 침수모형을 개발하는데 있다. 현재 침수예상도 작성을 위해 사용되는 2차원 침수해석 모형들은 복잡한 입력자료 및 격자 생성 도구를 필요로 한다. 이는 때때로 침수 모델링을 위해 많은 시간과 노력이 요구되며, 상황에 따라서는 입력자료의 구축에 어려움이 있을 수도 있다. 이러한 단점들을 보완하기 위해, 본 연구에서는 정확한 지형자료를 간단한 입력자료로 반영하여, 정확하고 신속한 침수해석을 도출할 수 있는 그리드 기반 모형을 개발하였다. 기존의 2×2 Sub-grid 모형을 5×5 Sub-grid까지 확장하여 계산의 효율성을 개선하였다. 모형의 정확성 및 적용성을 검토하기 위해, 태풍 루사로 인해 내수침수와 외수범람이 동시에 발생한 감천유역에 적용하였다. 사용자의 선택에 따른 효율적인 홍수분석을 위해, 격자 크기와 Sub-grid 개수에 따른 홍수파 전파양상, 침수해석의 정확성, 모형의 수행시간을 조사하였다. 개발된 모형은 정확한 침수해석 결과를 보여주는 침수예상도에서부터 대략적인 침수여부만을 보여주는 홍수위험도까지 다양한 상황에 맞는 침수해석 결과를 제시할 수 있으며, 재해지도 작성에도 활용성이 높을 것으로 기대된다.
This paper proposed a practical method for building detection and extraction using airborne laser scanning data. The proposed method consists mainly of two processes: low and high level processes. The major distinction from the previous approaches is that we introduce a concept of pseudogrid (or binning) into raw laser scanning data to avoid the loss of information and accuracy due to interpolation as well as to define the adjacency of neighboring laser point data and to speed up the processing time. The approach begins with pseudo-grid generation, noise removal, segmentation, grouping for building detection, linearization and simplification of building boundary , and building extraction in 3D vector format. To achieve the efficient processing, each step changes the domain of input data such as point and pseudo-grid accordingly. The experimental results shows that the proposed method is promising.
The interest in the access and integration of distributed massive data resources has increased recently. This paper presents the Advanced Collection Manager(CM) service with OGSA-DAI component which can access and integrate the distributed data resources. The Advanced CM service supports the data resource of various types. And it can provide the query, updating, transforming and delivering data via cooperating with other services in Grid Information Retrieval(Grid-IR or GIR) System. As a result, it can access and manage the data resource more flexible and efficient.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.