• 제목/요약/키워드: Grid connected PV system

검색결과 234건 처리시간 0.033초

Single-Phase Transformerless PV Power Conditioning Systems with Low Leakage Current and Active Power Decoupling Capability

  • Nguyen, Hoang Vu;Park, Do-Hyeon;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.997-1006
    • /
    • 2018
  • This paper proposes a transformerless photovoltaic (PV) power converter system based on the DC/AC boost inverter, which can solve the leakage current and second-order ripple power issues in single-phase grid-connected PV inverters. In the proposed topology, the leakage current can be decreased remarkably since most of the common-mode currents flow through the output capacitor, by-passing parasitic capacitors, and grounding resistors. In addition, the inherent ripple power component in the single-phase grid inverter can be suppressed without adding any extra components. Therefore, bulky electrolytic capacitors can be replaced by small film capacitors. The effectiveness of the proposed topology has been verified by simulation and experimental results for a 1-kW PV PCS.

시뮬레이션에 의한 PV시스템 설치방식의 최적설계에 관한 연구 (A Study on Optimal Design of PV System Installation by Simulation)

  • 소정훈;유권종;최주엽
    • 한국태양에너지학회 논문집
    • /
    • 제23권3호
    • /
    • pp.1-6
    • /
    • 2003
  • This paper compares the operation characteristics of PV(Photovoltaic) system by computer simulation with those of real PV system and the operation characteristics of PV system by computer simulation are evaluated and analyzed considering system parameters of specifications, installation and surrounding conditions etc. From the basis of these results, this study will intend to develop an evaluation, analysis tool and construct database for optimal design of PV system.

PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구 (A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS)

  • 차인수;박종복;정경환
    • 한국태양에너지학회 논문집
    • /
    • 제36권5호
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

계통연계형 PV시스템의 성능특성 평가방법 (Performance Evaluation Method of Grid-Connected PV System)

  • 소정훈;유병규;정영석;황혜미;유권종;최주엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1245-1246
    • /
    • 2007
  • In present, as the various PV system have been installed and disseminated, research and development of photovoltaic(PV) system is the most important issues to establish usefulness of design, installation, supervision and maintenance of PV system with performance improvement. This paper presents evaluation and analysis method for estimating performance and losses of PV system and components using monitoring data.

  • PDF

Stability Enhancement of a Hybrid Micro-grid System in Grid Fault Condition

  • Ambia, Mir Nahidul;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.225-231
    • /
    • 2013
  • Low voltage ride through capability augmentation of a hybrid micro-grid system is presented in this paper which reflects enhanced reliability in the system. The control scheme involves parallel connected multiple ac-dc bidirectional converters. When the micro-grid system is subjected to a severe voltage dip by any transient fault single power converter may not be able to provide necessary reactive power to overcome the severe voltage dip. This paper discusses the control strategy of additional power converter connected in parallel with main converter to support extra reactive power to withstand the severe voltage dip. During transient fault, when the terminal voltage crosses 90% of its pre-fault value, additional converter comes into operation. With the help of additional power converter, the micro-grid system withstands the severe voltage fulfilling the grid code requirements. This multiple converter scheme provides the micro-grid system the capability of low voltage ride through which makes the system more reliable and stable.

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.

태양광 발전과 ESS 시스템의 연계운전시 단독운전 방지 사례 연구 (A Case Study on the Islanding Detection Protection of PV System and ESS System)

  • 임종록;황혜미;신우균;주영철;정영석;강기환;고석환
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.59-66
    • /
    • 2019
  • BIPV or BAPV installation applied to building is increasing through public utility mandates enterprise. Solar PV energy generates only during the day, but if it is operated in convergence with ESS, which stores electrical energy, it can restrain the fossil energy used in buildings throughout the day. A solution is to converge with PV system and ESS. However, PV systems and ESS connected to the power grid in parallel can cause problems of electrical stability. A study was conducted on the case of failure to detect islanding operation under the parallel operation of PV generation and ESS that are connected in parallel to power grid. Experiments conducted various non-islanding detections under the operating conditions. In the experiment results, when one PCS - PV inverter or ESS inverter - was operating under the islanding condition, it stopped working within 0.5 seconds of the Korean grid standard. However, when both of PV inverter and ESS inverter were operating at the same time under the islanding situation, the anti-islanding algorithm did not operate normally and both inverters continuously supplied power to the connected RLC loads. islanding detection Algorithm developed by each inverter manufacturer has caused this phenomenon. Therefore, this paper presented a new test standard for islanding detection.

Micro-Grid 시스템에서 Peak-Shaving을 이용한 PV+ 시스템의 최적 운영 방법 (Optimal Operating Method of PV+ Storage System Using the Peak-Shaving in Micro-Grid System)

  • 이지환;이강원
    • 산업경영시스템학회지
    • /
    • 제43권2호
    • /
    • pp.1-13
    • /
    • 2020
  • There are several methods of peak-shaving, which reduces grid power demand, electricity bought from electricity utility, through lowering "demand spike" during On-Peak period. An optimization method using linear programming is proposed, which can be used to perform peak-shaving of grid power demand for grid-connected PV+ system. Proposed peak shaving method is based on the forecast data for electricity load and photovoltaic power generation. Results from proposed method are compared with those from On-Off and Real Time methods which do not need forecast data. The results also compared to those from ideal case, an optimization method which use measured data for forecast data, that is, error-free forecast data. To see the effects of forecast error 36 error scenarios are developed, which consider error types of forecast, nMAE (normalizes Mean Absolute Error) for photovoltaic power forecast and MAPE (Mean Absolute Percentage Error) for load demand forecast. And the effects of forecast error are investigated including critical error scenarios which provide worse results compared to those of other scenarios. It is shown that proposed peak shaving method are much better than On-Off and Real Time methods under almost all the scenario of forecast error. And it is also shown that the results from our method are not so bad compared to the ideal case using error-free forecast.

계통 연계형 태양광 발전 시스템의 위상 동기화를 위한 디지털 PLL 제어 (Digital PLL Control for Phase-Synchronization of Grid-Connected PV System)

  • 김용균;최종우;김흥근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권9호
    • /
    • pp.562-568
    • /
    • 2004
  • The frequency and phase angle of the utility voltage are important in many industrial systems. In the three-phase system, they can be easily known by using the utility voltage vector. However, in the case of single phase system, there are some difficulties in detecting the information of utility voltage. In conventional system, the zero-crossing detection method is widely used, but could not obtain the information of utility voltage instantaneously. In this paper, the new digital PLL control using virtual two phase detector is proposed with a detailed analysis of single-phase digital PLL control for utility connected systems. The experimental results under various utility conditions are presented and demonstrate an excellent phase tracking capability in the single-phase grid-connected operation.

태양광 연계 계통의 저전압 보호 기준 정립 (The Undervoltage Protection of Distribution System with Photovoltaic System)

  • 서훈철;김철환;윤영민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.438_439
    • /
    • 2009
  • This paper analyzes the undervoltage protection based on the dynamic stability of a PV system at fault conditions. A 3 MW PV system is modeled by Matlab/Simulink. Then, the distribution system interconnected with the PV system is modeled. This paper simulates the various fault types and analyzes the stability of the PV system at fault conditions. It is concluded that the undervoltage protection of the grid-connected PV system in Korea standard needs to be modified based on the results of the stability analysis.

  • PDF