• 제목/요약/키워드: Grid Structures

검색결과 393건 처리시간 0.021초

An enhanced simulated annealing algorithm for topology optimization of steel double-layer grid structures

  • Mostafa Mashayekhi;Hamzeh Ghasemi
    • Advances in Computational Design
    • /
    • 제9권2호
    • /
    • pp.115-136
    • /
    • 2024
  • Stochastic optimization methods have been extensively studied for structural optimization in recent decades. In this study, a novel algorithm named the CA-SA method, is proposed for topology optimization of steel double-layer grid structures. The CA-SA method is a hybridized algorithm combining the Simulated Annealing (SA) algorithm and the Cellular Automata (CA) method. In the CA-SA method, during the initial iterations of the SA algorithm, some of the preliminary designs obtained by SA are placed in the cells of the CA. In each successive iteration, a cell is randomly chosen from the CA. Then, the "local leader" (LL) is determined by selecting the best design from the chosen cell and its neighboring ones. This LL then serves as the leader for modifying the SA algorithm. To evaluate the performance of the proposed CA-SA algorithm, two square-on-square steel double-layer grid structures are considered, with discrete cross-sectional areas. These numerical examples demonstrate the superiority of the CA-SA method over SA, and other meta-heuristic algorithms reported in the literature in the topology optimization of large-scale skeletal structures.

암염돔 하부 구조의 구조보정 영상 개선을 위한 파형역산 기법 연구 (A Study of Waveform Inversion for Improvement of Sub-Salt Migration Image)

  • 하완수;편석준;손우현;신창수;고승원;서영탁
    • 지구물리와물리탐사
    • /
    • 제11권3호
    • /
    • pp.177-183
    • /
    • 2008
  • 석유탐사 분야에서 탐사대상이 되는 저류층이 갈수록 심부화되고 복잡한 지층 구조로 옮겨감에 따라 암염층 하부 구조를 영상화하는 기술은 석유 및 가스층의 탐지를 위해 매우 중요하게 부각되고 있다. 그러나 암염돔 구조의 특성상 안염돔 하부로부터의 반사 에너지가 미약하기 때문에 하부구조의 정확한 영상을 얻기는 힘들다. 이러한 어려움을 극복하고자 본 연구에서는 암염돔 하부 구조 영상화를 위해 다중격자(multi-grid) 기법을 사용하여 파형역산을 수행하였다. 고정격자를 이용한 통상적인 주파수 영역 파형역산 기법으로 얻은 결과와의 비교를 통해 암염돔 구조 및 하부 구조의 영상화에서 다중격자를 적용한 파형역산 기법의 장점을 확인하였다. 본 연구 결과를 통해 고정격자를 이용한 파형역산 기법으로 정확한 영상을 얻기 어려웠던 암염돔 구조에서도 다중격자를 적용하여 향상된 영상을 얻을 수 있음을 보여 주었다.

Wire-Grid 기법을 이용한 안테나특성 예측 (Prediction of antenna characteristics using Wire-Grid method)

  • 조웅희;간종만;이응주
    • 한국전자파학회지:전자파기술
    • /
    • 제3권2호
    • /
    • pp.10-15
    • /
    • 1992
  • The electromagentic characteristics of antennas in the complicated metallic structures were analyzed using the electric field integral equation. The accurancy of computer program was confirmed by comparing the computation result with NELC brass model study. And computation result of antenna characteristics in metallic structures was in good argreement with our measuring result.

  • PDF

격자 구조물의 비선형 동적 측면 충격해석 (Nonlinear Dynamic Lateral Buckling Behavior of a Grid Structures)

  • 윤경호;송기남;김홍배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.254-260
    • /
    • 2000
  • The spacer grid is one of the main structural components in fuel assembly, which supports the fuel rods, guides cooling water, and protects the fuel assembly from the external impact load such as earthquakes. The nonlinear dynamic impact analysis is conducted by using the finite element code ABAQUS/Explicit. Boundary condition for dynamic analysis is well applied to the test condition. Simulation results also similarly predict the local buckling phenomena. In addition to the buckling parameter, the local buckling cause is examined by both simulation and test method. It is found to correspond well with the test results. Impact tests are also carried out for some specimens of the spacer grid in order to compare the results between the test and the simulation. This test is accomplished by a free fall dummy weight onto the specimen. From this test, only the uppermost and lowermost layers of the multi-cell are buckled, which implies the local buckling at the weakest point of the grid structure.

  • PDF

준결정 시스템을 이용한 다면체 곡면 대공간구조의 비선형해석을 통한 구조시스템 개발 (Structural System Development by Nonlinear Analysis of Polyhedron Curved Space Structure Using Quasicrystal System)

  • 김승덕;이경수
    • 한국공간구조학회논문집
    • /
    • 제16권4호
    • /
    • pp.125-132
    • /
    • 2016
  • This paper is a study on the nonlinear behavior of polyhedron curved space roof as building structures of quasicrystal system. The quasicrystal is made up of two kinds of parallel hexahedrons, and all the line elements of the parallelepiped have the same length. The quasicrystal design grid dome has a pentagonal symmetry and all members have the same length. This paper described form of design gird dome, and showed the analysis conditions. Also, The displacement-load curve is shown through the analysis and we grasped the flow of the load and forces through analysis of design grid dome applied quasicrystal system.

기체 상 데토네이션 셀 구조 해석을 위한 수치적 요구 조건 (NUMERICAL REQUIREMENTS FOR THE SIMULATION OF DETONATION CELL STRUCTURES)

  • 최정열;조덕래;이수한
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.177-181
    • /
    • 2007
  • Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma}$ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.

  • PDF

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.

Design of tensegrity structures using artificial neural networks

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Structural Engineering and Mechanics
    • /
    • 제29권2호
    • /
    • pp.223-235
    • /
    • 2008
  • This paper focuses on the application of artificial neural networks (ANN) for optimal design of tensegrity grid as light-weight roof structures. A tensegrity grid, 2 m ${\times}$ 2 m in size, is fabricated by integrating four single tensegrity modules based on half-cuboctahedron configuration, using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. The structure is subjected to destructive load test during which continuous monitoring of the prestress levels, key deflections and strains in the struts and the cables is carried out. The monitored structure is analyzed using finite element method (FEM) and the numerical model verified and updated with the experimental observations. The paper then explores the possibility of applying ANN based on multilayered feed forward back propagation algorithm for designing the tensegrity grid structure. The network is trained using the data generated from a finite element model of the structure validated through the physical test. After training, the network output is compared with the target and reasonable agreement is found between the two. The results demonstrate the feasibility of applying the ANNs for design of the tensegrity structures.

지역 에너지 시스템(CommunityEnergysystem)의 개통 연계 운전 특성 (An Impact Analysis of Community Energy System (CES) on The Grid)

  • 박용업;김황호;장성일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.120-122
    • /
    • 2004
  • This paper analyse impacts of Community Energy System (CES) on the grid during transition periods for integrating of the CES and the grid. In the near future, CES might be one of major energy supply structures. The basic concept of CES is that it supplies electrical and thermal energy to the local customer loads through the islanded power network separated from the grid. Therefore, the interconnection with the grid occurs only when the energy supply from the CES generators does not meet the demand of the local load. For avoiding impacting the grid during the transition operation modes of CES, it is necessary to thoroughly analyse the influences on the grid during those periods. In order to show them, in this paper, we model the CES with 2.34 WVA DG and simulate the impacts on the grid due to interconnection of CES The simulation results show that, in order to reduce bad influences of CES on the grid, CES need the efficient load management and generation control schemes during the transition periods.

  • PDF

Dynamic reliability of structures: the example of multi-grid composite walls

  • Liu, Pei;Yaoa, Qian-Feng
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.463-479
    • /
    • 2010
  • Based on damage accumulation of multi-grid composite walls, a method of dynamic reliability estimations is proposed. The multi-grid composite wall is composed of edge frame beam, edge frame columns, grid beams, grid columns and filling blocks. The equations including stiffness, shear forces at filling blocks cracking and multi-grid composite walls yielding, ultimate displacement, and damage index are obtained through tests of 13 multi-grid composite wall specimens. Employing these equations in reliability calculations, procedures of dynamic reliability estimations based on damage accumulation of multi-grid composite walls subjected to random earthquake excitations are proposed. Finally the proposed method is applied to the typical composite wall specimen subjected to random earthquake excitations which can be specified by a finite number of input random variables. The dynamic reliability estimates, when filling blocks crack under earthquakes corresponding to 63% exceedance in 50 years and when the composite wall reach limit state under earthquakes corresponding to 2-3% exceedance in 50 years, are obtained using the proposed method by taking damage indexes as thresholds. The results from the proposed method which show good agreement with those from Monte-Carlo simulations demonstrate the proposed method is effective.