• Title/Summary/Keyword: Grid Structures

Search Result 391, Processing Time 0.024 seconds

An enhanced simulated annealing algorithm for topology optimization of steel double-layer grid structures

  • Mostafa Mashayekhi;Hamzeh Ghasemi
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.115-136
    • /
    • 2024
  • Stochastic optimization methods have been extensively studied for structural optimization in recent decades. In this study, a novel algorithm named the CA-SA method, is proposed for topology optimization of steel double-layer grid structures. The CA-SA method is a hybridized algorithm combining the Simulated Annealing (SA) algorithm and the Cellular Automata (CA) method. In the CA-SA method, during the initial iterations of the SA algorithm, some of the preliminary designs obtained by SA are placed in the cells of the CA. In each successive iteration, a cell is randomly chosen from the CA. Then, the "local leader" (LL) is determined by selecting the best design from the chosen cell and its neighboring ones. This LL then serves as the leader for modifying the SA algorithm. To evaluate the performance of the proposed CA-SA algorithm, two square-on-square steel double-layer grid structures are considered, with discrete cross-sectional areas. These numerical examples demonstrate the superiority of the CA-SA method over SA, and other meta-heuristic algorithms reported in the literature in the topology optimization of large-scale skeletal structures.

A Study of Waveform Inversion for Improvement of Sub-Salt Migration Image (암염돔 하부 구조의 구조보정 영상 개선을 위한 파형역산 기법 연구)

  • Ha, Wan-Soo;Pyun, Suk-Joon;Son, Woo-Hyun;Shin, Chang-Soo;Ko, Seung-Won;Seo, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • The sub-salt imaging technique becomes more crucial to detect the hydro-carbonates in petroleum exploration as the target reservoirs get deeper. However, the weak reflections from the sub-salt structures prevent us from obtaining high fidelity sub-salt image. As an effort to overcome this difficulty, we applied the waveform inversion by implementing multi-grid technique to the sub-salt imaging. Through the comparison between the conventional waveform inversion using fixed grid and the multi-grid technique, we confirmed that the waveform inversion using multi-grid technique has advantages over the conventional fixed grid waveform inversion. We showed that the multi-grid technique can complement he velocity estimation result of the waveform inversion for imaging the sub-salt structures, of which velocity model cannot be obtained correctly by the conventional fixed grid waveform inversion.

Prediction of antenna characteristics using Wire-Grid method (Wire-Grid 기법을 이용한 안테나특성 예측)

  • 조웅희;간종만;이응주
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.10-15
    • /
    • 1992
  • The electromagentic characteristics of antennas in the complicated metallic structures were analyzed using the electric field integral equation. The accurancy of computer program was confirmed by comparing the computation result with NELC brass model study. And computation result of antenna characteristics in metallic structures was in good argreement with our measuring result.

  • PDF

Nonlinear Dynamic Lateral Buckling Behavior of a Grid Structures (격자 구조물의 비선형 동적 측면 충격해석)

  • Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Hong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.254-260
    • /
    • 2000
  • The spacer grid is one of the main structural components in fuel assembly, which supports the fuel rods, guides cooling water, and protects the fuel assembly from the external impact load such as earthquakes. The nonlinear dynamic impact analysis is conducted by using the finite element code ABAQUS/Explicit. Boundary condition for dynamic analysis is well applied to the test condition. Simulation results also similarly predict the local buckling phenomena. In addition to the buckling parameter, the local buckling cause is examined by both simulation and test method. It is found to correspond well with the test results. Impact tests are also carried out for some specimens of the spacer grid in order to compare the results between the test and the simulation. This test is accomplished by a free fall dummy weight onto the specimen. From this test, only the uppermost and lowermost layers of the multi-cell are buckled, which implies the local buckling at the weakest point of the grid structure.

  • PDF

Structural System Development by Nonlinear Analysis of Polyhedron Curved Space Structure Using Quasicrystal System (준결정 시스템을 이용한 다면체 곡면 대공간구조의 비선형해석을 통한 구조시스템 개발)

  • Kim, Seung-Deog;Lee, Kyoung-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.125-132
    • /
    • 2016
  • This paper is a study on the nonlinear behavior of polyhedron curved space roof as building structures of quasicrystal system. The quasicrystal is made up of two kinds of parallel hexahedrons, and all the line elements of the parallelepiped have the same length. The quasicrystal design grid dome has a pentagonal symmetry and all members have the same length. This paper described form of design gird dome, and showed the analysis conditions. Also, The displacement-load curve is shown through the analysis and we grasped the flow of the load and forces through analysis of design grid dome applied quasicrystal system.

NUMERICAL REQUIREMENTS FOR THE SIMULATION OF DETONATION CELL STRUCTURES (기체 상 데토네이션 셀 구조 해석을 위한 수치적 요구 조건)

  • Choi, Jeong-Yeol;Cho, Deok-Rae;Lee, Su-Han
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.177-181
    • /
    • 2007
  • Present study examines the numerical issues of cell structure simulation for various regimes of detonation phenomena ranging from weakly unstable to highly unstable detonations. Inviscid fluid dynamics equations with $variable-{\gamma}$ formulation and one-step Arrhenius reaction model are solved by a MUSCL-type TVD scheme and 4th order accurate Runge-Kutta time integration scheme. A series of numerical studies are carried out for the different regimes of the detonation phenomena to investigate the computational requirements for the simulation of the detonation wave cell structure by varying the reaction constants and grid resolutions. The computational results are investigated by comparing the solution of steady ZND structure to draw out the minimum grid resolutions and the size of the computational domain for the capturing cell structures of the different regimes of the detonation phenomena.

  • PDF

Mesh size refining for a simulation of flow around a generic train model

  • Ishak, Izuan Amin;Alia, Mohamed Sukri Mat;Salim, Sheikh Ahmad Zaki Shaikh
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.223-247
    • /
    • 2017
  • By using numerical simulation, vast and detailed information and observation of the physics of flow over a train model can be obtained. However, the accuracy of the numerical results is questionable as it is affected by grid convergence error. This paper describes a systematic method of computational grid refinement for the Unsteady Reynolds Navier-Stokes (URANS) of flow around a generic model of trains using the OpenFOAM software. The sensitivity of the computed flow field on different mesh resolutions is investigated in this paper. This involves solutions on three different grid refinements, namely fine, medium, and coarse grids to investigate the effect of grid dependency. The level of grid independence is evaluated using a form of Richardson extrapolation and Grid Convergence Index (GCI). This is done by comparing the GCI results of various parameters between different levels of mesh resolutions. In this study, monotonic convergence criteria were achieved, indicating that the grid convergence error was progressively reduced. The fine grid resolution's GCI value was less than 1%. The results from a simulation of the finest grid resolution, which includes pressure coefficient, drag coefficient and flow visualization, are presented and compared to previous available data.

Design of tensegrity structures using artificial neural networks

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.223-235
    • /
    • 2008
  • This paper focuses on the application of artificial neural networks (ANN) for optimal design of tensegrity grid as light-weight roof structures. A tensegrity grid, 2 m ${\times}$ 2 m in size, is fabricated by integrating four single tensegrity modules based on half-cuboctahedron configuration, using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. The structure is subjected to destructive load test during which continuous monitoring of the prestress levels, key deflections and strains in the struts and the cables is carried out. The monitored structure is analyzed using finite element method (FEM) and the numerical model verified and updated with the experimental observations. The paper then explores the possibility of applying ANN based on multilayered feed forward back propagation algorithm for designing the tensegrity grid structure. The network is trained using the data generated from a finite element model of the structure validated through the physical test. After training, the network output is compared with the target and reasonable agreement is found between the two. The results demonstrate the feasibility of applying the ANNs for design of the tensegrity structures.

An Impact Analysis of Community Energy System (CES) on The Grid (지역 에너지 시스템(CommunityEnergysystem)의 개통 연계 운전 특성)

  • Park Y. U.;Kim K. H.;Jang S. I.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.120-122
    • /
    • 2004
  • This paper analyse impacts of Community Energy System (CES) on the grid during transition periods for integrating of the CES and the grid. In the near future, CES might be one of major energy supply structures. The basic concept of CES is that it supplies electrical and thermal energy to the local customer loads through the islanded power network separated from the grid. Therefore, the interconnection with the grid occurs only when the energy supply from the CES generators does not meet the demand of the local load. For avoiding impacting the grid during the transition operation modes of CES, it is necessary to thoroughly analyse the influences on the grid during those periods. In order to show them, in this paper, we model the CES with 2.34 WVA DG and simulate the impacts on the grid due to interconnection of CES The simulation results show that, in order to reduce bad influences of CES on the grid, CES need the efficient load management and generation control schemes during the transition periods.

  • PDF

Dynamic reliability of structures: the example of multi-grid composite walls

  • Liu, Pei;Yaoa, Qian-Feng
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.463-479
    • /
    • 2010
  • Based on damage accumulation of multi-grid composite walls, a method of dynamic reliability estimations is proposed. The multi-grid composite wall is composed of edge frame beam, edge frame columns, grid beams, grid columns and filling blocks. The equations including stiffness, shear forces at filling blocks cracking and multi-grid composite walls yielding, ultimate displacement, and damage index are obtained through tests of 13 multi-grid composite wall specimens. Employing these equations in reliability calculations, procedures of dynamic reliability estimations based on damage accumulation of multi-grid composite walls subjected to random earthquake excitations are proposed. Finally the proposed method is applied to the typical composite wall specimen subjected to random earthquake excitations which can be specified by a finite number of input random variables. The dynamic reliability estimates, when filling blocks crack under earthquakes corresponding to 63% exceedance in 50 years and when the composite wall reach limit state under earthquakes corresponding to 2-3% exceedance in 50 years, are obtained using the proposed method by taking damage indexes as thresholds. The results from the proposed method which show good agreement with those from Monte-Carlo simulations demonstrate the proposed method is effective.