• Title/Summary/Keyword: Grid Environment

Search Result 1,030, Processing Time 0.159 seconds

A Relative Performance Index-based Job Migration in Grid Computing Environment (그리드 컴퓨팅 환경에서의 상대성능지수에 기반한 작업 이주)

  • Kim Young-Gyun;Oh Gil-Ho;Cho Kum Won;Ko Soon-Heum
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.4
    • /
    • pp.293-304
    • /
    • 2005
  • In this paper, we research on job migration in a grid computing environment with cactus and MPICH-C2 based on Globus. Our concepts are to perform job migration by finding the site with plenty of computational resources that would decrease execution time in a grid computing environment. The Migration Manager recovers the job from the checkpointing files and restarts the job on the migrated site. To select a migrating site, the proposed method considers system's performance index, cpu's load, network traffic to send migration job tiles and the execution time predicted on a migration site. Then it selects a site with maximal performance gains. By selecting a site with minimum migration time and minimum execution time. this approach implements a more efficient grid computing environment. The proposed method Is proved by effectively decreasing total execution time at the $K\ast{Grid}$.

Application Contents Deploy System based on workflow process a unit based for collaboration in Grid Environment (그리드 환경에서 협업을 위한 워크플로우 프로세스 단위 기반의 애플리케이션 컨텐츠 배포 시스템)

  • Moon, Seok-Jae;Heo, Hyuk;Choi, Young-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.172-182
    • /
    • 2008
  • Application Contents of based on a workflow process unit in grid system is a practical work to solve the problem. To construct cooperation environment is very important because the contents are deployed and executed. And the most of cooperation is executed by workflow. Globus toolkit is the middleware for cooperation process in grid environment. However the middleware only provides basic services for constructing grid, not workflow that can provides cooperation, job scheduling, application contents management. Also Globus toolkit is suitable for huge gird community but small size pc based grid community. Therefore, this paper proposes the efficient application contents deployment system for small sizes cooperation. This system supports efficient cooperation environment with Application contents deployment and resource management provided in grid community. Also it presents information and association relation among application contents with association dictionary among application contents based on workflow process unit, and utilizes this as information for application contents deployment.

A Study on De-Identification of Metering Data for Smart Grid Personal Security in Cloud Environment

  • Lee, Donghyeok;Park, Namje
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.263-270
    • /
    • 2017
  • Various security threats exist in the smart grid environment due to the fact that information and communication technology are grafted onto an existing power grid. In particular, smart metering data exposes a variety of information such as users' life patterns and devices in use, and thereby serious infringement on personal information may occur. Therefore, we are in a situation where a de-identification algorithm suitable for metering data is required. Hence, this paper proposes a new de-identification method for metering data. The proposed method processes time information and numerical information as de-identification data, respectively, so that pattern information cannot be analyzed by the data. In addition, such a method has an advantage that a query such as a direct range search and aggregation processing in a database can be performed even in a de-identified state for statistical processing and availability.

Analysis of the Effect on the Location Evaluation of Golf Course according to the Unit Grid Size applied in the Slope Analysis(In flank of Environment) (경사도 분석에 적용하는 단위격자크기가 골프장의 입지 평가에 미치는 영향 분석(환경적 측면에서))

  • Um, Dae Yong;Lee, Beung Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.467-475
    • /
    • 2012
  • In this study, the problems were analyzed that derived a different position evaluation results depending on the unit grid size that are applied to the terrain slope analysis conducted to assess the its position and environmental impacts in the prior environment reviewing process of golf course construction projects. For this purpose, the unit grid size were analyzed that can precisely reflect a actual terrain by analyzing the change of a slope percentage according to the change of unit grid size about 12 golf courses is currently in progress of construction work through the environmental consultation or ongoing consultation. And the consultation availability of environmental assessment was reverified by applying the unit grid size derived through this study about a study golf course. In the result of study, the bigger grid size for slope analysis is set, the greatly gradient is changed and the slope ratio of the higher elevation was lowly evaluated in comparison with actual terrain. The analytical result that most closely match the actual terrain was extracted in the case applied $5m{\times}5m$ of the unit grid sizes setting in this study. So, we proposed this study results to the ministry of environment and could be amended the unit grid size of $5m{\times}5m$ as standard for the analysis of slope. Also, if new grid size for site evaluation is applied to the study sites, 4 sites exceed the standard suggested the existing regulations and they are not proper as golf course site in flank of environment.

Ontology Based Semantic Information System for Grid Computing (그리드 컴퓨팅을 위한 온톨로지 기반의 시맨틱 정보 시스템)

  • Han, Byong-John;Kim, Hyung-Lae;Jeong, Chang-Sung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.87-103
    • /
    • 2009
  • Grid computing is an expanded technology of distributed computing technology to use low-cost and high-performance computing power in various fields. Although the purpose of Grid computing focuses on large-scale resource sharing, innovative applications, and in some case, high-performance orientation, it has been used as conventional distributed computing environment like clustered computer until now because Grid middleware does not have common sharable information system. In order to use Grid computing environment efficiently which consists of various Grid middlewares, it is necessary to have application-independent information system which can share information description and services, and expand them easily. Thus, in this paper, we propose a semantic information system framework based on web services and ontology for Grid computing environment, called WebSIS. It makes application and middleware developer easy to build sharable and extensible information system which is easy to share information description and can provide ontology based platform-independent information services. We present efficient ontology based information system architecture through WebSIS. Discovering appropriate resource for task execution on Grid needs more high-level information processing because Grid computing environment is more complex than other traditional distributed computing environments and has various considerations which are needed for Grid task execution. Thus, we design and implement resource information system and services by using WebSIS which enables high-level information processing by ontology reasoning and semantic-matching, for automation of task execution on Grid.

  • PDF

Design and Implementation of Ganga Plugins for Grid Interoperability (그리드 상호 운용을 위한 Ganga 플러그인 설계 및 구현)

  • Kim, Han-Gi;Hwang, Soon-Wook;Lee, Yoon-Ki;Kim, Eun-Sung;Yeom, Heon-Y.
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.881-890
    • /
    • 2009
  • To solve big problem in high energy physics or bioinformatics, it needs a large number of computing resources. But it hard to be provided by one grid environment. While user can submit each job by using it's own user interface in each grid environment, it may need many cost and efforts to manage several hundred jobs conserved in each grid environment separately. In this paper, to solve this problem we develop Ganga's Gridway backend and InterGrid backend. Therefore as we provide the same grid user interface between different grid environments. We developed a Gridway backend module that provide users with access to globus-based grid resources as well. We have also developed an InterGrid backend that allows users to submit jobs that have access to both glite-based resources and globus-based resources. In order to demonstrate the practicality of the new backend plugin modules, we have integrated the AutoDock application used by WISDOM project into Ganga as a new built-in application plugin for Ganga. And we preformed interoperability experiment between PRAGMA grid based on Globus and EGEE grid based on gLite.

Thinning-Based Topological Map Building for Local and Global Environments (지역 및 전역 환경에 대한 세선화 기반 위상지도의 작성)

  • Kwon Tae-Bum;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.693-699
    • /
    • 2006
  • An accurate and compact map is essential to an autonomous mobile robot system. For navigation, it is efficient to use an occupancy grid map because the environment is represented by probability distribution. But it is difficult to apply it to the large environment since it needs a large amount of memory proportional to the environment size. As an alternative, a topological map can be used to represent it in terms of the discrete nodes with edges connecting them. It is usually constructed by the Voronoi-like graphs, but in this paper the topological map is incrementally built based on the local grid map using the thinning algorithm. This algorithm can extract only meaningful topological information by using the C-obstacle concept in real-time and is robust to the environment change, because its underlying local grid map is constructed based on the Bayesian update formula. In this paper, the position probability is defined to evaluate the quantitative reliability of the end nodes of this thinning-based topological map (TTM). The global TTM can be constructed by merging each local TTM by matching the reliable end nodes determined by the position probability. It is shown that the proposed TTM can represent the environment accurately in real-time and it is readily extended to the global TTM.

Effective Sonar Grid map Matching for Topological Place Recognition (위상학적 공간 인식을 위한 효과적인 초음파 격자 지도 매칭 기법 개발)

  • Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.247-254
    • /
    • 2011
  • This paper presents a method of sonar grid map matching for topological place recognition. The proposed method provides an effective rotation invariant grid map matching method. A template grid map is firstly extracted for reliable grid map matching by filtering noisy data in local grid map. Using the template grid map, the rotation invariant grid map matching is performed by Ring Projection Transformation. The rotation invariant grid map matching selects candidate locations which are regarded as representative point for each node. Then, the topological place recognition is achieved by calculating matching probability based on the candidate location. The matching probability is acquired by using both rotation invariant grid map matching and the matching of distance and angle vectors. The proposed method can provide a successful matching even under rotation changes between grid maps. Moreover, the matching probability gives a reliable result for topological place recognition. The performance of the proposed method is verified by experimental results in a real home environment.

Comparative Analysis of Centralized Vs. Distributed Locality-based Repository over IoT-Enabled Big Data in Smart Grid Environment

  • Siddiqui, Isma Farah;Abbas, Asad;Lee, Scott Uk-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.75-78
    • /
    • 2017
  • This paper compares operational and network analysis of centralized and distributed repository for big data solutions in the IoT enabled Smart Grid environment. The comparative analysis clearly depicts that centralize repository consumes less memory consumption while distributed locality-based repository reduce network complexity issues than centralize repository in state-of-the-art Big Data Solution.

  • PDF

Accounting Information Gathering System for Grid Environment

  • Jang Haeng Jin;Doo Gil Su;Lee Jeong Jin;Kim Beob Kyun;Hwang Ho Jeon;An Dong Un;Chung Seung Jong
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.703-706
    • /
    • 2004
  • Grid computing represents the fundamental computing shift from a localized resource computing model to a fully-distributed virtual organization with shared resources. Accounting is one of the main obstacles to widespread adoption of the grid. Accounting has until recently, been a sparsely-addressed problem, particularly in practice. In this paper, we design and implement the accounting information gathering system. Implemented system is based on OGSA, following GSAX framework of RUS-WG in GGF. And the schema of gathered and serviced accounting information is following Usage Record Fields of UR-WG in GGF. Also, the accounting information integrating and monitoring tool for system management in the grid environment are implemented.

  • PDF