• Title/Summary/Keyword: Grid Agent

Search Result 60, Processing Time 0.023 seconds

A Study on Simultaneous Load Factor of Intelligent Electric Power Reduction System in Korea (한국의 지능형 전력동시부하율 저감시스템에 관한 연구)

  • Kim, Tae-Sung;Lee, Jong-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2012
  • This study is designed to predict the overall electric power load, to apply the method of time sharing and to reduce simultaneous load factor of electric power when authorized by user entering demand plans and using schedules into the user's interface for a certain period of time. This is about smart grid, which reduces electric power load through simultaneous load factor of electric power reduction system supervision agent. Also, this study has the following characteristics. First, it is the user interface which enables authorized users to enter and send/receive such data as demand plan and using schedule for a certain period of time. Second, it is the database server, which collects, classifies, analyzes, saves and manages demand forecast data for a certain period of time. Third, is the simultaneous load factor of electric power control agent, which controls usage of electric power by getting control signal, which is intended to reduce the simultaneous load factor of electric power by the use of the time sharing control system, form the user interface, which also integrate and compare the data which were gained from the interface and the demand forecast data of the certain period of time.

Multimodal layer surveillance map based on anomaly detection using multi-agents for smart city security

  • Shin, Hochul;Na, Ki-In;Chang, Jiho;Uhm, Taeyoung
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.183-193
    • /
    • 2022
  • Smart cities are expected to provide residents with convenience via various agents such as CCTV, delivery robots, security robots, and unmanned shuttles. Environmental data collected by various agents can be used for various purposes, including advertising and security monitoring. This study suggests a surveillance map data framework for efficient and integrated multimodal data representation from multi-agents. The suggested surveillance map is a multilayered global information grid, which is integrated from the multimodal data of each agent. To confirm this, we collected surveillance map data for 4 months, and the behavior patterns of humans and vehicles, distribution changes of elevation, and temperature were analyzed. Moreover, we represent an anomaly detection algorithm based on a surveillance map for security service. A two-stage anomaly detection algorithm for unusual situations was developed. With this, abnormal situations such as unusual crowds and pedestrians, vehicle movement, unusual objects, and temperature change were detected. Because the surveillance map enables efficient and integrated processing of large multimodal data from a multi-agent, the suggested data framework can be used for various applications in the smart city.

An Agent-Based Model Analysis on the Effects of Consumers' Demand Response System (행위자기반모형을 이용한 선택적 전력요금제의 전력요금 절감효과 분석)

  • Park, Hojeong;Lee, Yoo-Soo
    • Environmental and Resource Economics Review
    • /
    • v.24 no.1
    • /
    • pp.225-249
    • /
    • 2015
  • There are growing interests in the introduction of consumer's selective electricity tariff systems in order to enhance demand response in electricity market in Korea. Real time pricing (RTP) and Time of Use (TOU) are typical examples of demand response system through which electricity price is linked to real time demand. This paper adopts an agent-based model to analyze the effects of such demand system on the counsumers' electricity costs. The result shows that real time pricing system is effective to reduce electricity costs of consumers by providing more flexible tariff system, depending on each consumer's demand pattern. This finding could be used as a basis for supporting smart grid system in the presence of responsive demand environment.

Analysis of Multi-Agent-Based Adaptive Droop-Controlled AC Microgrids with PSCAD: Modeling and Simulation

  • Li, Zhongwen;Zang, Chuanzhi;Zeng, Peng;Yu, Haibin;Li, Hepeng;Li, Shuhui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.455-468
    • /
    • 2015
  • A microgrid (MG) with integrated renewable energy resources can benefit both utility companies and customers. As a result, they are attracting a great deal of attention. The control of a MG is very important for the stable operation of a MG. The droop-control method is popular since it avoids circulating currents among the converters without using any critical communication between them. Traditional droop control methods have the drawback of an inherent trade-off between power sharing and voltage and frequency regulation. An adaptive droop control method is proposed, which can operate in both the island mode and the grid-connected mode. It can also ensure smooth switching between these two modes. Furthermore, the voltage and frequency of a MG can be restored by using the proposed droop controller. Meanwhile, the active power can be dispatched appropriately in both operating modes based on the capacity or running cost of the Distributed Generators (DGs). The global information (such as the average voltage and output active power of the MG and so on) required by the proposed droop control method to restore the voltage and frequency deviations can be acquired distributedly based on the Multi Agent System (MAS). Simulation studies in PSCAD demonstrate the effectiveness of the proposed control method.

Protection Management for Guaranteed User-Driven Virtual Circuit Services in Dynamic Multi-domain Environments: Design Issues and Challenges

  • Lim, Huhnkuk
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.369-379
    • /
    • 2015
  • Fault management of virtualized network environments using user-driven network provisioning systems (NPSs) is crucial for guaranteeing seamless virtual network services irrespective of physical infrastructure impairment. The network service interface (NSI) of the Open Grid Forum reflects the need for a common standard management API for the reservation and provisioning of user-driven virtual circuits (VCs) across global networks. NSI-based NPSs (that is, network service agents) can be used to compose user-driven VCs for mission-critical applications in a dynamic multi-domain. In this article, we first attempt to outline the design issues and challenges faced when attempting to provide mission-critical applications using dynamic VCs with a protection that is both user-driven and trustworthy in a dynamic multi-domain environment, to motivate work in this area of research. We also survey representative works that address inter-domain VC protection and qualitatively evaluate them and current NSI against the issues and challenges.

Reinforcement learning Speedup method using Q-value Initialization (Q-value Initialization을 이용한 Reinforcement Learning Speedup Method)

  • 최정환
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.13-16
    • /
    • 2001
  • In reinforcement teaming, Q-learning converges quite slowly to a good policy. Its because searching for the goal state takes very long time in a large stochastic domain. So I propose the speedup method using the Q-value initialization for model-free reinforcement learning. In the speedup method, it learns a naive model of a domain and makes boundaries around the goal state. By using these boundaries, it assigns the initial Q-values to the state-action pairs and does Q-learning with the initial Q-values. The initial Q-values guide the agent to the goal state in the early states of learning, so that Q-teaming updates Q-values efficiently. Therefore it saves exploration time to search for the goal state and has better performance than Q-learning. 1 present Speedup Q-learning algorithm to implement the speedup method. This algorithm is evaluated. in a grid-world domain and compared to Q-teaming.

  • PDF

Study on the Smart Charging for Plug-in Hybrid Electric Vehicle (플러그인 하이브리드 전기자동차의 스마트 충전에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.349-352
    • /
    • 2008
  • The most concerning issue in these days is the energy crisis by increasing threat of global warming and depletion of natural resources. In the situations, the Plug-in Hybrid Electric Vehicle (PHEV) is drawing attention from many countries for the next generation's car which has higher fuel efficiency and lower environmental impact. This paper presents simulation results about the limit capacity of central power-grid which doesn't have enough surplus electric power for charging PHEVs. Therefore, this paper also presents a smart charging system that can charge the PHEVs with a function of distributing demands of charging. The smart charging system is an agent facility between the government and consumer, which can recommend the best time to charge the battery of PHEVs by the lowest energy cost. This function of choosing time-slots is the technical system for the government which wants to control the consumption rate of electric power for PHEVs. Finally, this paper presents the economic feasibility of PHEVs from the two kinds of price system, midnight electric price and home electric price.

  • PDF

Web service communication method on Distributed Object-Oriented Virtual Environment System on Grid (그리드 기반 분산 객체지향 가상환경 시스템에서의 웹서비스 통신기법)

  • Yi, Ki-Ho;Kim, Hyung-Lae;Jeoung, Chang-Sung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.522-525
    • /
    • 2006
  • 그리드 기반 분산객체지향 가상환경 시스템인 DOVE-G는 많은 리소스를 요구로 하는 분산된 그리드 컴퓨팅 어플리케이션에서 효율적인 병렬프로그래밍 환경을 지원하는데 이에 웹서비스를 이용해 다양한 어플리케이션에서 고급 그리드 컴퓨팅 환경을 제공할 수 있다. 본 논문에서는 웹서비스를 이용해 DOVE-G의 implementation을 모르더라도 DOVE-G 서비스를 쉽게 이용할 수 있도록 해주는 Interface Object와 Agent Object 두 개의 DOVE-G Object를 이용한 통신기법을 제시한다.

  • PDF

An Immune Algorithm based Multiple Energy Carriers System (면역알고리즘 기반의 MECs (에너지 허브) 시스템)

  • Son, Byungrak;Kang, Yu-Kyung;Lee, Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.23-29
    • /
    • 2014
  • Recently, in power system studies, Multiple Energy Carriers (MECs) such as Energy Hub has been broadly utilized in power system planners and operators. Particularly, Energy Hub performs one of the most important role as the intermediate in implementing the MECs. However, it still needs to be put under examination in both modeling and operating concerns. For instance, a probabilistic optimization model is treated by a robust global optimization technique such as multi-agent genetic algorithm (MAGA) which can support the online economic dispatch of MECs. MAGA also reduces the inevitable uncertainty caused by the integration of selected input energy carriers. However, MAGA only considers current state of the integration of selected input energy carriers in conjunctive with the condition of smart grid environments for decision making in Energy Hub. Thus, in this paper, we propose an immune algorithm based Multiple Energy Carriers System which can adopt the learning process in order to make a self decision making in Energy Hub. In particular, the proposed immune algorithm considers the previous state, the current state, and the future state of the selected input energy carriers in order to predict the next decision making of Energy Hub based on the probabilistic optimization model. The below figure shows the proposed immune algorithm based Multiple Energy Carriers System. Finally, we will compare the online economic dispatch of MECs of two algorithms such as MAGA and immune algorithm based MECs by using Real Time Digital Simulator (RTDS).

Integrated Navigation of the Mobile Service Robot in Office Environments

  • Chung, Woo-Jin;Kim, Gun-Hee;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2033-2038
    • /
    • 2003
  • This paper describes an integrated navigation strategy for the autonomous service robot PSR. The PSR is under development at the KIST for service tasks in indoor public environments. The PSR is a multi-functional mobile-manipulator typed agent, which works in daily life. Major advantages of proposed navigation are as follows: 1) Structured control architecture for a systematic integration of various software modules. A Petri net based configuration design enables stable control flow of a robot. 2) A range sensor based generalized scheme of navigation. Any range sensor can be selectively applied using the proposed navigation scheme. 3) No need for modification of environments. (No use of artificial landmarks.) 4) Hybrid approaches combining reactive behavior as well as deliberative planner, and local grid maps as well as global topological maps. A presented experimental result shows that the proposed navigation scheme is useful for mobile service robot in practical applications.

  • PDF