• 제목/요약/키워드: Grey level co-occurrence matrices

검색결과 4건 처리시간 0.025초

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

텍스처 분석 기반 칼라 텍스처 이미지 워터마킹 알고리즘 (Color-Texture Image Watermarking Algorithm Based on Texture Analysis)

  • 강명수;트룩 뉘엔;딘 뉘엔;김철홍;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.35-43
    • /
    • 2013
  • 텍스처 이미지가 다양한 산업 애플리케이션 분야에 널리 사용됨에 따라, 이러한 이미지들의 저작권 보호는 중요한 이슈가 되어왔다. 이러한 이유로, 본 논문은 이미지에 내재한 텍스처 특성을 이용한 칼라 텍스처 이미지 워터마킹 알고리즘을 제안한다. 제안한 알고리즘은 퍼지 클러스터링을 위한 입력으로써 그레이 레벨 동시발생 행렬의 에너지와 동질성 특징을 사용하여 워터마크를 삽입하기 위한 적당한 블록들을 선택한다. 워터마크를 삽입하기 위해 먼저 선택된 블록들에 이산 웨이블릿 변환을 수행하고, 이산 웨이블릿 변환의 서버밴드들의 하나를 선택한다. 그런후에 이 워터마크를 중간 대역의 이산 코사인 변환 계수에 삽입한다. 또한, 본 논문은 워터마크 삽입 후 비인지성과 다양한 형태의 워커마킹 공격에 대해 강인성이 뛰어난 이득 계수들과 이산 웨이블릿 변환의 서버밴드들의 효과를 탐색한다. 모의실험 결과, 제안한 알고리즘은 이득 계수가 42이고 HH 밴드에 워터마크를 삽입하였을 때 높은 PSNR 값 (47.66 dB to 48.04 dB) 및 낮은 M-SVD 값 (8.84 to 15.6)을 얻었다. 또한 제안한 알고리즘은 노이즈 첨가, 필터링, 잘라내기 및 JPEG 압축과 같은 다양한 이미지 처리 공격에서도 높은 상관 값 (0.7193 to 1)을 보였다.

모멘트와 동차성 특징 결합에 의한 텍스쳐 영상 분할 (Texture Images Segmentation by Combination of Moment & Homogeneity Features)

  • 모문정;임종석;이우범;김욱현
    • 한국정보처리학회논문지
    • /
    • 제7권11호
    • /
    • pp.3592-3602
    • /
    • 2000
  • 영상 처리는 크게 영상에 내재된 특성값을 얻어내는 영상분석과, 동일한 성질의 영상을 분류하는 영상분류의 두단계로 이루어진다. 본 논문에서는 텍스쳐에 내재된 일반적인 속성인 거침과 부드러움의 특성 추출을 통해서 영상에 포함된 다양한 텍스쳐를 자동적으로 인식하고 분류하는 방법을 제안한다. 특성추출은 텍스쳐 영상이 지닌 그레이 레벨의 공간적인 의존성을 이용한 통계적 분석에 기반한 것으로 모멘트와 동차성의 조합을 통해서 일반적인 텍스쳐의 속성을 검출하기 때문에 텍스쳐의 구조형태에 크게 영향을 받지 않는 이점을 가지고 있다. 거친 텍스쳐일수록 강하게 반응하는 모멘트와 부드러운 텍스쳐일수록 강하게 반응하는 동차성의 차를 이용하기 때문에 보다 뚜렷한 텍스쳐 분할이 가능하다. 제안한 시스템의 성능 평가를 위해서 다양한 텍스쳐 영상에 제안한 방법을 적용하고, 성공적인 결과를 보인다.

  • PDF

EVALUATION OF SPEED AND ACCURACY FOR COMPARISON OF TEXTURE CLASSIFICATION IMPLEMENTATION ON EMBEDDED PLATFORM

  • Tou, Jing Yi;Khoo, Kenny Kuan Yew;Tay, Yong Haur;Lau, Phooi Yee
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.89-93
    • /
    • 2009
  • Embedded systems are becoming more popular as many embedded platforms have become more affordable. It offers a compact solution for many different problems including computer vision applications. Texture classification can be used to solve various problems, and implementing it in embedded platforms will help in deploying these applications into the market. This paper proposes to deploy the texture classification algorithms onto the embedded computer vision (ECV) platform. Two algorithms are compared; grey level co-occurrence matrices (GLCM) and Gabor filters. Experimental results show that raw GLCM on MATLAB could achieves 50ms, being the fastest algorithm on the PC platform. Classification speed achieved on PC and ECV platform, in C, is 43ms and 3708ms respectively. Raw GLCM could achieve only 90.86% accuracy compared to the combination feature (GLCM and Gabor filters) at 91.06% accuracy. Overall, evaluating all results in terms of classification speed and accuracy, raw GLCM is more suitable to be implemented onto the ECV platform.

  • PDF