• 제목/요약/키워드: Greenhouse soil moisture

검색결과 65건 처리시간 0.032초

점적관개에 따른 토양수분 재분배 균일성 평가 (Uniformity Assessment of Soil Moisture Redistribution for Drip Irrigation)

  • 최순군;최진용;남원호;허승오;김학진;정선옥;한경화
    • 한국농공학회논문집
    • /
    • 제54권3호
    • /
    • pp.19-28
    • /
    • 2012
  • Greenhouse cultivation has been increasing for high quality and four season crop production in South Korea. For the cultivation in a greenhouse, maintaining adequate soil moisture at each crop growth stage is quite important for yield stability and quality while the behavior of moisture movement in the soil has complexity and adequate moisture conditions for crops are vary. Drip irrigation systems have been disseminated in the greenhouse cultivation due to advantages including irrigation convenience and efficiency without savvy consideration of the soil moisture redistribution. This study aims to evaluate soil moisture movement of drip irrigation according to the soil moisture uniformity assessment. Richards equation and finite difference scheme were adapted to simulate soil moisture behavior in soil. Soil container experiment was conducted and the model was validated using the data from the experiment. Two discharge rate (1 ${\ell}/hr$ and 2 ${\ell}/hr$) and three spaces between the emitters (10 cm, 20 cm, and 30 cm) were used for irrigation system evaluation. Christiansen uniformity coefficient was also calculated to assess soil moisture redistribution uniformity. The results would propose design guidelines for drip irrigation system installation in the greenhouse cultivation.

파이프 골조온실의 원주형 콘크리트 기초의 인발저항력에 관한 연구 (A Study on the Uplift Capacity of Cylindrical Concrete Foundations for Pipe-Framed Greenhouse)

  • 윤용철;윤충섭;서원명;강만호
    • 한국농공학회지
    • /
    • 제40권4호
    • /
    • pp.109-119
    • /
    • 1998
  • Recently pipe-framed greenhouses are widely constructed on domestic farm area. These greenhouses are extremely light-weighted structures and so are easily damaged under strong wind due to the lack of uplift resistance of foundation piles. This experiment was carried out by laboratory soil tank to investigate the displacement be haviors of cylindrical pile foundations according to the uplift loads. Tested soils were sampled from two different greenhouse areas. The treatment for each soil type are consisted of 3 different soil moisture conditions, 2 different soil depths, and 3 different soil compaction ratios. Each test was designed to be repeated 2 times and additional tests were carried out when needed. The results are summarized as follows : 1. When the soil moisture content are low and/or pile foundations are buried relatively shallow, ultimate uplift capacity of foundation soil was generated just after begining of uplift displacement. But under the high moisture conditions and/or deeply buried depth, ultimate up-lift capacity of foundation soil was generated before the begining of uplift displacement. 2. For the case of soil S$_1$, the ultimate uplift capacity of piles depending on moisture contents was found to be highest in optimum moisture condition and in the order of air dryed and saturated moisture contents. But for the case of soil S$_2$, the ultimate uplift capacity was found to be highest in optimum moisture condition and in the order of saturated and air dryed moisture contents. 3. Ultimate uplift capacities are varied depending on the pile foundation soil moisture conditions. Under the conditions of optimum soil moisture contents with 60cm soil depth, the ultimate uplift capacity of pile foundation in compaction ratio of 80%, 85%, and 90% for soil 51 are 76kg, 115kg, and 155kg, respectively, and for soil S$_2$are 36kg, 60kg, and 92kg, respectively. But considering that typical greenhouse uplift failure be occurred under saturnted soil moisture content which prevails during high wind storm accompanying heavy rain, pile foundation is required to be designed under the soil condition of saturated moisture content. 4. Approximated safe wind velosities estimated for soil sample S$_1$and S$_2$are 32.92m/s and 26.58m/s respectively under the optimum soil condition of 90% compaction ratio and optimum moisture content. But considering the uplift failure pattern under saturated moisture contents which are typical situations of high wind accompanying heavy rain, the safe wind velosities for soil sample S$_1$and S$_2$are not any higher than 20.33m/s and 22.69m/s respectively.

  • PDF

시설재배 토양의 수분 조절을 위한 자동 수분제어시스템 개발 (Development of an Automatic Water Control System for Greenhouse Soil Water Content Management)

  • 이동훈;이규승;장영창
    • Journal of Biosystems Engineering
    • /
    • 제33권2호
    • /
    • pp.115-123
    • /
    • 2008
  • This study was conducted to develop an automatic soil water content control system for greenhouse, which consisted of drip irrigation nozzles, soil water content sensors, an on/off valve, a servo-motor assembly and a control program. The control logic adopted in the system was Ziegler-Nichols algorithm and rising time, time constant and over/undershoot ratio as control variables in the system was selected and determined by various control experiments to maintain small delay time and low overshoot. Based on the experimental results, it was concluded that the control system developed in the study could replace the unreliable conventional greenhouse soil water management.

온실 복합생장환경 관제 시스템 구현 (Implementation of Complex Growth-environment Control System in Greenhouse)

  • 조현욱;조종식;박인곤;서범석;김찬우;신창선
    • 디지털산업정보학회논문지
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, Wireless sensor network technology applied to various greenhouse agro-industry items such as horticulture and local specialty etc., we was constructed automatic control system for optimum growth environment by measuring growth status and environmental change. existing monitoring systems of greenhouse gather information about growth environment depends on the temperature. but in this system, Can be efficient collection and control of information to construct wireless sensor network by growth measurement sensor and environment monitoring sensor inside of the greenhouse. The system is consists of sensor manager for information processing, an environment database that stores information collected from sensors, the GUI of show the greenhouse status, it gather soil and environment information to soil and environment(including weather) sensors, growth measurement sensor. In addition to support that soil information service shows the temperature, moisture, EC, ph of soil to user through the interaction of obtained data and Complex Growth Environment information service for quality and productivity can prevention and response by growth disease or disaster of greenhouse agro-industry items how temperature, humidity, illumination acquiring informationin greenhouse(strawberry, ginseng). To verify the executability of the system, constructing the complex growth environment measurement system using wireless sensor network in greenhouse and we confirmed that it is can provide our optimized growth environment information.

포도 '거봉'의 2기작 재배에서 근권환경 특성 (Root zone environments in two cropping system within a year for Kyoho grapes)

  • 오성도;김용현
    • 생물환경조절학회지
    • /
    • 제6권4호
    • /
    • pp.235-241
    • /
    • 1997
  • 거봉과 같은 대립계 4배체 포도의 근역제한 재배에서 품질향상과 수량을 증대시키려면 포도수체 지상부의 기온과 상대습도 뿐만 아니라 근권부의 지온과 토양수분을 적정하게 관리하는 것이 중요하다. 거봉의 2기작을 위한 근역 제한 재배에서 지중가온과 토양수분을 조절하면서 근권부의 지온과 토양수분 홉인합의 변화 특성을 살펴보고자 시도된 본 연구에서 나타난 결과를 요약하면 다음과 같다. 1. 가온 시기에 주간의 최고 기온과 야간 기온의 평균치는 각각 25.1~32.7$^{\circ}C$, 18$^{\circ}C$ 이고, 상대습도는 주간 최저치와 야간 최고치가 각각 50~55%, 84~87%로 나타났다. 2. 지중 15cm 깊이에서 지중 가온구와 지중 무가온구 지온의 평균치는 각각 25.6$^{\circ}C$, 17.4$^{\circ}C$로서 지온의 적정 범위에 해당되어 본 실험에서 적용된 온수보일러에 의한 지중 가온이 효과적인 것으로 나타났다. 3. 15cm 깊이에서 토양수분 흡인압의 목표치를 pF 2.2로 설정하였을 때 관수 개시와 함께 15cm 깊이에서의 흡인압은 pF 1.5 정도까지 하강하였으나, 이후에는 흡인압이 상승하면서 pF 2.0~2.2를 유지하여 토양수분 흡인압의 조절이 효과적으로 이루어졌다. 그러므로 근역 제한 재배에서 관수 개시점을 결정하기 위한 지표로서 지중 15cm 깊이에서 측정된 토양수분 홉인압을 이용하는 것이 바람직하다. 4. 거봉의 근역 제한 재배에서 신초의 도장을 방지하려면 근권부의 효과적인 배수 대책이 요구된다.

  • PDF

배추 밭에서의 N2O, CH4, CO2 토양배출량 측정 및 특성 연구: 주요온실가스 배출량 측정 및 지표생태변화에 따른 특성 연구 (Soil Emission Measurements of N2O, CH4 and CO2 from Intensively Managed Upland Cabbage Field)

  • 김득수;나운성
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.313-325
    • /
    • 2011
  • From October 2009 to June 2010, major greenhouse gases (GHG: $N_2O$, $CH_4$, $CO_2$) soil emission were measured from upland cabbage field at Kunsan ($35^{\circ}$56'23"N, $126^{\circ}$43'14"E), Korea by using closed static chamber method. The measurements were conducted mostly from 10:00 to 18:00LST during field experiment days (total 28 days). After analyzing GHG concentrations inside of flux chamber by using a GC equipped with a methanizer (Varian CP3800), the GHG fluxes were calculated from a linear regression of the changes in the concentrations with time. Soil parameters (e.g. soil moisture, temperature, pH, organic C, soil N) were also measured at the sampling site. The average soil pH and soil moisture were ~pH $5.42{\pm}0.03$ and $70.0{\pm}1.8$ %WFPS (water filled pore space), respectively. The ranges of GHG flux during the experimental period were $0.08\sim8.40\;mg/m^2{\cdot}hr$ for $N_2O$, $-92.96\sim139.38mg/m^2{\cdot}hr$ for $CO_2$, and $-0.09\sim0.05mg/m^2{\cdot}hr$ for $CH_4$, respectively. It revealed that monthly means of $CO_2$ and $CH_4$ flux during October (fall) were positive and significantly higher than those (negative value) during January (winter) when subsoil have low temperature and relatively high moisture due to snow during the winter measurement period. Soil mean temperature and moisture during these months were $17.5{\pm}1.2^{\circ}C$, $45.7{\pm}8.2$%WFPS for October; and $1.4{\pm}1.3^{\circ}C$, $89.9{\pm}8.8$ %WFPS for January. It may indicate that soil temperature and moisture have significant role in determining whether the $CO_2$ and $CH_4$ emission or uptake take place. Low temperature and high moisture above a certain optimum level during winter could weaken microbial activity and the gas diffusion in soil matrix, and then make soil GHG emission to the atmosphere decrease. Other soil parameters were also discussed with respect to GHG emissions. Both positive and negative gas fluxes in $CH_4$ and $CO_2$ were observed during these measurements, but not for $N_2O$. It is likely that $CH_4$ and $CO_2$ gases emanated from soil surface or up taken by the soil depending on other factors such as background concentrations and physicochemical soil conditions.

열펌프에 의한 그린하우스 난방시스템의 열특성과 시뮬레이션 모델개발 (Thermal Characteristics and Simulation Model Development for Greenhouse Heating System with Heat Pump)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.155-162
    • /
    • 2001
  • The greenhouse heating system with heat pump was built for development of simulation model and validation. The computer simulation model for the system to predict temperature of air and soil and moisture content of soil in the greenhouse were developed, and its validity was justified by actual data. From the analysis of experimentally measured data and the simulation output, following results were obtained. 1. The expected values of inside air temperature for the heating system with heat pump were very much close to the experimental values. 2. In the heating system with heat pump, the expected values of day time surface temperature of soil by computer simulation were very much similar to the measured values, but those of night time were higher than the measured value by at most 2.0$\^{C}$. 3. The simulation model predicted temperature of greenhouse film as of 1$\^{C}$ below than the mean value of ambient air and greenhouse air temperature. 4. Heat loss value of daytime was found to be larger than that of nigh as much as 1.3 to 2.3 times for the heating system with heat pump. 5. In the heating system with heat pump, when the lowest ambient temperature was -8$\^{C}$∼-7$\^{C}$ the air temperature of greenhouse was 5$\^{C}$∼6$\^{C}$, thus the heat pump heating system contributed in greenhouse heating by 13$\^{C}$.

  • PDF

Development of Crop Growth Model under Different Soil Moisture Status

  • Goto, Keita;Yabuta, Shin;Sakagami, Jun-Ichi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2019년도 추계학술대회
    • /
    • pp.19-19
    • /
    • 2019
  • It is necessary to maintain stable crop productions under the unsuitable environments, because the drought and flood may be frequently caused by the global warming. Therefore, it is agent to improve the crop growth model corresponded to soil moisture status. Chili pepper (Capsicum annuum) is one of the useful crop in Asia, and then it is affected by change of precipitation in consequence drought and flood occur however crop model to evaluate water stresses on chili pepper is not enough yet. In this study, development of crop model under different soil moisture status was attempted. The experiment was conducted on the slope fields in the greenhouse. The water level was kept at 20cm above the bottom of the container. Habanero (C. chinense) was used as material for crop model. Sap bleeding rate, SPAD value, chlorophyll content, stomatal conductance, leaf water potential, plant height, leaf area and shoot dry weight were measured at 10 days after treatment (DAT) and 13 DAT. Moreover, temperature and RH in the greenhouse, soil volume water contents (VWC) and soil water potential were measured. As a result, VWC showed 4.0% at the driest plot and 31.4% at the wettest plot at 13 DAT. The growth model was calculated using WVC and the growth analysis parameters. It was considered available, because its coefficient of determination showed 0.84 and there are significant relationship based on plants physiology among the parameters and the changes over time. Furthermore, we analyzed the important factors for higher accuracy prediction using multiple regression analysis.

  • PDF

Cultural and Rainfall Factors Involved in Disease Development of Fusarium Wilt of Sweet Potato

  • Lee, Yong-Hwan;Cha, Kwang-Hong;Lee, Doo-Goo;Shim, Hyeong-Kwon;Ko, Sug-Ju;Park, In-Jin;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • 제20권2호
    • /
    • pp.92-96
    • /
    • 2004
  • Environmental factors such as soil moisture, land management, and weather conditions affecting Fusarium wilt of sweet potato were investigated in major sweet potato cultivation regions in Korea. Fusarium wilt occurred mainly in reclaimed terracing lands, which are flattened and located in hilly to mountainous areas at the base of the mountain, in early seasonal cultivation regions. Disease severity was lower in reclaimed fields with natural slope. The development of Fusarium wilt in the fields was highly correlated with precipitation during planting period (r=-0.96**). Fusarium wilt was more severe in fields with less than 20 cm of available soil depth than in fields with over 20 cm of available soil depth. Greenhouse studies were consistent with field studies that less soil moisture content caused severe Fusarium wilt of sweet potato. These results indicate that low rainfall and moisture of soil with low effective soil depth during planting period are important environmental factors influencing the development of Fusarium wilt.

Analyzing Growth Reactions of Herbaceous Plants for Irrigation Management

  • Jeong, Myeong Il;Jeong, Na Ra;Han, Seung Won;Kim, Jae Soon
    • 인간식물환경학회지
    • /
    • 제23권3호
    • /
    • pp.255-265
    • /
    • 2020
  • Background and objective: The purpose of this study was to provide guidelines for irrigation management by analyzing the effects of soil moisture on the growth characteristics of herbaceous plants in green infrastructure. Methods: In a rain shelter greenhouse, the growth performance of nine species of experimental plants was assessed under different soil moisture contents (20%, 15%, 10%, 5%, and 1%) for about 5 months to analyze plant growth characteristics due to soil humidity. Methods to determine plant growth conditions include surveying growth conditions of the crowns, stems, leaves, flowers and fruits on the aerial part and surveying growth conditions of the roots in the underground part. Results: The results showed that Mukdenia rossii and Astilbe rubra grew well at 15% moisture content with irrigation intervals of 10 and 13 days, respectively. Soil moisture content of 10% with irrigation intervals of 13 and 17 days was appropriate for Sedum kamtschaticum and Pachysandra terminalis. Similarly, Aquilegia japonica and Liriope platyphylla grew well at 15% moisture content with irrigation intervals of 10 and 17 days. However, Ligularia stenocephala grew well-developed stems and roots at 1% soil moisture content and an irrigation interval of 25 days, while the optimum conditions for Lythrum anceps were 5% moisture content and an irrigation interval of 8 days. Conclusion: Although a limited number of experimental plants were used in this study, this study could propose an appropriate irrigation cycle for planting on artificial soil substrates. Based on these results, it is possible to plan suitable planting designs considered irrigation cycles.