• Title/Summary/Keyword: Greenhouse gas (GHG) emissions

Search Result 276, Processing Time 0.025 seconds

A Review of U.S. Renewable Energy Expansion and Support Policies (미국의 재생 에너지 확대 및 지원정책 연구)

  • Kim, Chu
    • Land and Housing Review
    • /
    • v.9 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The purpose of this study is to review the U.S. renewable energy policies implemented by the federal government and the state governments to investigate potential barriers of renewable energy expansion and to develop policy implications for the successful renewable energy policy making in Korea. Recently, the restructuring in the energy supply chain has been being a new trend in many countries that shows a transition from traditional fossil fuels to sustainable renewable energy sources. The United States has enforced effective renewable energy policies (i.e., regulatory policies, financial incentives), which have led to the exploding growth of renewable energy facilities and productions over the last ten years. For example, many state governments in the U.S. are implementing Renewable Portfolio Standard (RPS) policies that require increased energy supply from renewable energy sources (i.e., solar, wind and geothermal). These RPS policies are expected to account for at least 10-50 percent of total electricity production in the next fifteen years. As part of results, in the recent three years, renewable energy in the U.S provided over 50 percent of total new power generation constructions. On the other hand, Korea initiated to develop climate change policies in 2008 for the Green Growth Policy that set up a target reduction of national Greenhouse Gas (GHG) emissions up to 37 percent by 2025. However, statistical data for accumulated renewable energy capacity refer that Korea is still in its early stage that contribute to only 7 percent of the total electricity production capacity and of which hydroelectric power occupied most of the production. Thus, new administration in Korea announced a new renewable energy policy (Renewable Energy 3020 Plan) in 2017 that will require over 95 percent of the total new generations as renewable energy facilities to achieve up to 20 percent of the total electricity production from renewable energy sources by 2030. However, to date, there have not been enough studies to figure out the barriers of the current policy environment and to develop implications about renewable energy policies to support the government plan in Korea. Therefore, this study reviewed the U.S. renewable energy policies compared with Korean policies that could show model cases to introduce related policies and to develop improved incentives to rapidly spread out renewable energy facilities in Korea.

Review of property and utilization of oil crop for biodiesel (바이오디젤 원료작물의 기름 및 지방산 특성에 따른 활용방안 고찰)

  • Jang, Young-Seok;Kim, Kwang-Soo;Lee, Yong-Hwa;Cho, Hyeon-Jun;Suh, Sae-Jung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.25-46
    • /
    • 2010
  • The demand for fuel and energy resources continues to grow due to increased consumption and emerging economies in all parts of the world. With this increase in demand, crude oil prices in the international market has jumped dramatically. Global warming, which is a consequence of increasing greenhouse gas (GHG) emissions, has become scientific, social, and political concerns. To cope with global warming and energy crisis, cost-competitive biofuels are urgently needed. In addition, development of an infrastructure, which supplies energy stably and diversifies energy resources, as well as new cost-saving technologies should be developed to reduce the costs of producing biofuels. Due to high oleic acid content, rapeseed (Brassica napus L.) is currently the potential feedstock for biodiesel production in temperate zone region and the production and use of rapeseed oil is already commercialized in Europe. In Korea double-cropping (rice and rapeseed) became more prevalent because it reduces competitions from land constraints. Production of rapeseed as a biodiesel feedstock may reduce the influence of rising oil prices and nation's dependence on imported petroleum and increase job opportunities and farm incomes.

Assessment of a rain barrel sharing network in Korea using storage-reliability-yield relationship (저류용량-신뢰도-수요량 관계를 이용한 레인배럴 공유 네트워크의 국내 성능 평가)

  • Kwon, Youjeong;Seo, Yongwon;Park, Chang Kun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.961-971
    • /
    • 2020
  • The Intergovernmental Panel on Climate Change (IPCC) reported that the amount of precipitation in South Korea would increase regardless of the reduction of Greenhouse Gas (GHG) emissions. Moreover, the temporal and spatial rainfall variation would also increase in the future. Due to the geographic allocation of Korea, more than 80% of the annual precipitation occurs in the wet season from early July to late September. It is expected that the average precipitation in this period will increase from the Representative Concentration Pathways (RCP) scenario projections. These predictions imply an increased variability of available water resources. Rainwater harvesting system is widely used as an alternative water resources today. This study introduces a RBSN (rain barrel sharing network) as an efficient way to utilize alternative water resources under the RCP scenarios. The concept of RBSN combines individual rainwater harvesting system to a sharing network, which make the whole system more reliable. This study evaluated a RBSN in South Korea composed of four users based on a storage-reliability-yield (SRY) relationship. The study area comprises all 17 provincal areas in South Korea. The result showed a huge benefit from a RBSN in Korea under the historical rainfall condition. Even in the climate change condition, the results showed that a RBSN is still beneficial but the changes in reliability are different depending on provinces in Korea. The results of this study shows that a RBSN is a very effective and alternative measure that can deal with the impacts of climate change in the near future.

Analysis of the Impact of Key Design Elements for the EU-ETS Phase 4 on the K-ETS in the Future (EU ETS 4기의 주요 제도 설계가 향후 국내 배출권거래제 운영에 미칠 영향 분석)

  • Son, Insung;Kim, Dong Koo
    • Environmental and Resource Economics Review
    • /
    • v.30 no.1
    • /
    • pp.129-167
    • /
    • 2021
  • The emission trading system is an essential policy for reducing greenhouse gas emissions and converting low-carbon society. EU ETS is a good benchmark that is ahead of Korea's emission trading system in terms of operating period and design know-how. Therefore, this study focused on the key design elements of EU ETS phase 4 such as total emission allowances issued (Cap), free allocation method, carbon leakage list, market stability reserve, and innovation supporting system. In addition, we analyzed the impact of key design elements and their changes during EU ETS Phase 1 to 4 on the design and operation of Korea emission trading system in the future. First of all, the expected impact on the design of Korea emission trading system is to increase three demands: preparing benchmark renewal plans, establishing criteria for selecting free allocation industries that reflect domestic industrial structure and characteristics and introducing two-stage evaluations for free allocation industries, and preparing specific plan to support innovation and industries using allowance auction revenues. The next three impacts on the operation of Korea emission trading system are the increased needs for objective and in-depth impact assessment of plan and amendments, provision of system stability and response opportunities by quickly confirming plan and amendments prior to the implementation, and coordination of the emission trading system governance and stakeholder participation encouragement.

Analysis of CO2 Emission Pattern by Use in Residential Sector (가정 부문 이산화탄소 배출량 추이 분석)

  • Yoon, So Won;Lim, Eun Hyouk;Lee, Gyoung Mi;Hong, You Deok
    • Journal of Climate Change Research
    • /
    • v.1 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The objective of this study is the estimate of $CO_2$ emissions by the energy consumption of functional technology introduced by classifying energy use in households according to functions as well as energy resources. This study also intends to provide the practical basis data in order to establish specific alternatives for GHG mitigation in residential sector with examining the cause analysis affecting $CO_2$ emission increases from 1995 to 2007. The results of this study show a 6.6% increase in the total $CO_2$ from 60,636 thousand tons in 1995 to 64,611 thousand tons in 2007 by using energy in residential sector. Heating is the greatest $CO_2$ emission sector by use, followed electric appliances, cooking, lighting and cooling. Heating sector shows 56.6% reductions from 71.5% in 1995 and as do cooling and electric home appliances, with a 2.4% increase from 0.6% and a 21.8% increase from 14.2% respectively. To analyze factors resulted in $CO_2$ emissions in residential sector, the relevant indicator change rate from 2005 to 2007 was examined. The results find that population, the number of household, housing areas, family patterns, and family income resulted in the $CO_2$ emissions increase in residential sector from 1995 to 2007. On the other hand, carbon intensity and energy intensity contribute to $CO_2$ reduction in residential sector with -2% and -38.7% respectively because of the energy conversion and the improvement of energy efficiency in electronic appliances. This study can be used as a reference when taken account of the reality and considered the introduction of highly effective measures to increase the possibility of mitigation potential in residential sector hereafter.

Analysis of Energy Savings and CO2 Emission Reductions via Application of Smart Grid System (지능형 전력망(스마트 그리드) 적용을 통한 에너지 절감 및 CO2 감축 효과 분석)

  • Park, Soo-Hwan;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.356-370
    • /
    • 2017
  • The energy savings and $CO_2$ emission reductions obtainable from the situation that the Smart Grid system (SGs) is assumed to be applied in Korea up to 2030 is quantitatively analyzed with many reported data. For calculation, SGs is divided into five sectors such as Smart Transmission and Distribution (ST&D), Smart Consumer (SC), Smart Electricity Service (SES), Smart Renewable Energy (SRE) and Smart Transportation (ST). Total annual energy savings in 2030 is estimated to be approximately 103,121 GWh and this is 13.1% of total electricity consumption outlook. Based on this value, total amount of reducible $CO_2$ emissions is calculated to 55.38 million $tCO_2$, which is 17.6% of total nation's GHG reduction target. Although the contribution of energy saving due to SGs to total electricity consumption increases as years go by, that of $CO_2$ emission reduction gradually decreases. This might be because that coal fired based power generation is planned to be sharply increased and the rate of $CO_2$ emission reduction scheduled by nation is very fast. The contributable portion of five each sector to total $CO_2$ emission reductions in 2030 is estimated to be 44.37% for SC, 29.16% for SRE, 20.12% for SES, 5.11% for ST&D, and 1.24% for ST.