• Title/Summary/Keyword: Greenhouse Structure

Search Result 218, Processing Time 0.025 seconds

An Evaluation of the Structural Stability of a Clip Type Prefabricated Greenhouse under Strong Wind and Heavy Snow Conditions (조립식 클립형 비닐하우스의 강풍 및 폭설시 구조 안정성 평가)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3423-3428
    • /
    • 2014
  • Numerical studies were performed to evaluate the structural safety of a greenhouse under both snow and wind loads. In the case of a wind load, fluid-structure interaction (FSI) method was used to consider the local pressure distributions on the greenhouse-induced by aerodynamic characteristics. The results showed that the maximum stress and deformation occur near the junction of pipe supports and rafters of the roof, where connecting clips are installed. Moreover, the wind load is a more severe condition than a snow load. Overall, these results will be used to design a prefabricated connecting clip with easy installation and low maintenance.

The Glass Greenhouse's Lighting Simulation for Ginseng with Solar Cell and LED (태양전지와 LED를 이용한 인삼재배용 유리온실의 조도 시뮬레이션)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.14-19
    • /
    • 2019
  • In this study, the Relux illumination program was used to simulate the optimal lighting design for a glass greenhouse with Si and DSSC solar-cells and LEDs. The results of the daylight simulation show that the optimum conditions were a structure angle of 90o and higher transmittance. The results of the illumination simulation produced a power consumption effect of 5.6 kwh in the summer (42[%] energy savings compared to full LED control) and 7.8 kwh in the winter (58[%] energy savings compared to full LED control). The results suggest that ginseng should be grown in an energy-saving glass greenhouse.

Nationwide Reduction of Primary Energy and Greenhouse Gas Emission by PMV Control Considering Individual Metabolic Rate Variations in Apartments (아파트 건물에서 재실자 활동량이 고려된 PMV제어에 따른 연간 국가 차원의 1차 에너지 및 온실가스 감축량 분석)

  • Hong, Sung-Hyup;Do, Sung-Lok;Lee, Kwang Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.37-44
    • /
    • 2018
  • In this study, the effects of considering hourly metabolic rate variations for predicted mean vote (PMV) control on the heating and cooling energy and greenhouse gas emission were investigated. The case adopting PMV control taking the hourly metabolic rate into account was comparatively analyzed against the conventional dry-bulb air temperature control, using a detailed simulation technique. Under the assumption that all the apartments in Korea adopt the PMV control incorporating real-time metabolic rate measurements, nationwide reductions of primary energy and greenhouse gas emission were analyzed. As a result, PMV control considering hourly metabolic rate variations is expected to reduce national primary energy by 6.2% compared to conventional dry-bulb air temperature control, corresponding to reduction of 10,342 GWh. In addition, it turned out that 6.6% of tCO2 emission can be reduced by adopting PMV control, corresponding to nationwide reduction of greenhouse gas emission by approximately 1,720,000 tCO2.

Production-Based Greenhouse Gas Emissions and Consumption-Based Emissions (생산기반 온실가스 배출량 vs 소비기반 온실가스 배출량)

  • Hong Chong, Cho;Hyojung, Koo
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.597-617
    • /
    • 2022
  • In this study, consumption-based greenhouse gas emissions from 1990 to 2021 are calculated by the industry sector, and greenhouse gas emissions transferred due to trade between countries are compared to analyze what implications Korea has. As a result, production-based and consumption-based emissions in the United States, Germany, the EU, and the OECD are gradually decreasing. Production-based emission in Korea is larger than consumption-based emissions because Korean economic structure is import-oriented. However, unlike other developed countries, Korea cannot trade energy by land, so it can be said that it is reasonable to establish a greenhouse gas reduction plan considering Korea's unique characteristics.

Analyzing the Applicability of Greenhouse Detection Using Image Classification (영상분류에 의한 하우스재배지 탐지 활용성 분석)

  • Sung, Jeung Su;Lee, Sung Soon;Baek, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • Jeju where concentrates on agriculture and tourism, conversion of outdoor culture into cultivation under structure happens actively for the purpose of increasing profit so continuous examination on house cultivation area is very important for this region. This paper is to suggest the effective image classification method using high resolution satellite image to detect the greenhouse. We carried out classification of greenhouse using the supervised classification and rule-based classification method about Formosat-2 images. Connecting result of two classification try to find accuracy improvement for greenhouse detection. Results about each classification method were calculated the accuracy by comparing with the result of visual detection. As a result, mahalanobis distance among the supervised methods was resulted in the highest detection. Also, it could be checked that detection accuracy was improved by tying with result of supervised method and result of rule-based classification. Therefore, it was expected that effective detection of greenhouse would be feasible if henceforward further study is performed in the process of connecting supervised classification and rule-based classification.

Comparative Study on Efficiencies of Naturally-Ventilated Multi-Span Greenhouses in Korea (다연동 온실의 자연환기효율성 비교 분석)

  • Kwon, Soon-Hong;Jung, Sung-Won;Kwon, Soon-Gu;Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.8-18
    • /
    • 2017
  • This research analyzed the ventilation effect of the multi-span greenhouse based on the types of greenhouse structure, weather conditions, and locations inside the greenhouse. To compare and analyze the ventilation effects with different types of greenhouse, the uniform environmental conditions should be selected in advance. But these factors are not controlled and require tense many precision facilities and labor forces. Thus, the CFD simulation was used for the air stream to be analyzed qualitatively and quantitatively. In addition, for the ventilation effect analysis, the TGD (Tracer Gas Decay) was used to overcome the shortcomings of the current ventilation measurement method. The calculation error of ventilation rate using TGD was low (10.5%). Thus, the TGD is very effective in calculating the ventilation efficiency. The wind direction of 90 degrees showed the best ventilation effect. The ventilation rate also decreased along the air circulation path, and the rate was the lowest around the outlet. The computed fluid method (CFD) turned out to be a power tool for simulating flow behavior in greenhouse.

Performance of Heat Pump System Using Underground Air as Heat Source (지하공기를 이용하는 농업시설용 난방시스템)

  • Kang, Youn-Ku;Ryou, Young-Sun;Kim, Young-Hwa;Sung, Moon-Seok;Kim, Jong-Koo;Jang, Jae-Kyoung;Lee, Hyoung-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.587-589
    • /
    • 2009
  • The districts of underground geologic structure in Jeju island where underground air is distributed are lava cave, pyroclastic, open joint, and crushing zone. Such districts are identified to secure an enough airflow when air ventilation layer is to secure 25-35m in depth. In Jeju, Ground air is used for heating greenhouse and fertilizing natural $CO_2$ gas by suppling directly into greenhouse. But the heating method by suppling ground air into greenhouse directly bring about several problem. The occurrence of disease of the crops by high humidity is worried because the underground air which becomes discharge from underground air layer has over 90% relative humidity. The underground air is inadequate in heating for crops which need high temperature heating such as mangos, Hallbong and mandarin orange because the temperature of it is $15{\sim}18^{\circ}C$. Also There is worry where the ventilation loss becomes larger because the air pressure inside greenhouse is high by supplying underground air directly. In this study the heat pump system using underground air as heat source was developed and heating performance of the system was analysed. Heating COP of the system was 2.5~5.0 and rejecting heat into greenhouse and extracting heat from underground air were 40,000~27,000 kcal/h, 30,000~18,000 kcal/h respectively.

  • PDF

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Greenhouse Environment and Growth of Green Pepper (Capsicum annuum L.) in Greenhouse Covered with CEM BIO Film (CEM BIO Film 피복시설의 환경특성과 풋고추 생육)

  • Chun, Hee;Kim, Kyung-Je;Kwon, Young-Sam;Kim, Hyun-Hwan;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.161-165
    • /
    • 2000
  • Spectroradiometric light transmittance from 300 to 1,100nm in the greenhouse covered with the CEM BIO polyethylene film was greater than that in the greenhouse covered with polyethylene film (control). As a whole, solar radiation transmittance into greenhouse was a half level, due to shades caused by double layer covering, frame and equipment. Net radiation energy emitted throughout surface of the greenhouse covered with CEM BIO polyethylene film was 5,424.5W.m$^{-2}$ , which was lower by 2.9% as compared to that of the greenhouse covered with polyethylene film. Photosynthetically active radiation from 400 to 700nm of the greenhouse covered with CEM BIO polyethylene film was 3,861.2W.m$^{-2}$ , which was higher by 3.8% as compared to hat of the greenhouse covered with polyethylene film. Accumulated minimum air temperature from Oct. 7, 1997 to Oct. 16, 1997 of the greenhouse covered with CEM BIO polyethylene film was 100.5$^{\circ}C$, which was higher by 2.5$^{\circ}C$ as compared to that of the greenhouse covered with polyethylene film. As results, height, stem diameter, leaf count, leaf area, fresh weight and dry weight of green pepper plants and canopy production structure measured at 30 days after transplanting were enhanced. Mean fruit weight n the greenhouse covered with CEM BIO polyethylene film was 11.28 g and 1.25 g greater as compared to that in the greenhouse covered with polyethylene film, due to increased fruit diameter and flesh thickness. Percent marketable fruits produced in the greenhouse covered with CEM BIO polyethylene film were 96.1%, and was greater by 2.7% thant that of the greenhouse covered with polyethylnee film due to decreased infection, sterility, severe curve and twisted fruits. The green pepper yield of the greenhouse covered with CEM BIO polyethylene film from Nov. 19, 1997 to Feb. 3, 1998 was greater by 974 kg per hectare than that of the greenhouse covered with polyethylene film, but the total fruit had no difference.

  • PDF

Structural System Reliability Analysis of Semi-rigid Connected Frame - Focused on Plastic Greenhouse - (반강결 프레임 구조물의 시스템 신뢰성 해석 - 비닐하우스를 중심으로 -)

  • Lee, Sangik;Lee, Jonghyuk;Jeong, Youngjoon;Kim, Dongsu;Seo, Byunghun;Seo, Yejin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.67-77
    • /
    • 2022
  • Recently, the trend in structural analysis and design is moving towards the development of reliable system. The reliability-based method defines various limit states related to usability and failure, thereby enabling multiple levels of design according to the importance of a structure. Meanwhile, an actual structure is composed of a set of several elements, and particularly, a frame type is composed of a system in which the members are connected each other. At this time, the actual connection between members is in a semi-rigid condition, not in complete rigid or hinged. This semi-rigid is found in several structures, especially in agricultural facilities designed with lightweight materials. In this study, a system reliability analysis technique for frame structure was established, and applied to an analysis of the semi-rigid connection. Various conditions of correlation were applied to reflect the connectivity between members, and through this, the limitations of existing structural analysis method and the behavioral characteristics of structure were analyzed. The failure probability of the frame member component and the overall structure system was significantly different in consideration of the semi-rigid connection. In addition, it was evaluated that the behavior of structure can be more accurately analyzed if the correlation according to the position of members in a system is further investigated.