• Title/Summary/Keyword: Greenhouse Gas Reduction

Search Result 641, Processing Time 0.03 seconds

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

Estimation of GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Side Skirt and Boat Tail (사이드스커트와 보트테일을 이용한 대형화물차량의 연비개선 효과 및 온실가스 감축량 추정)

  • Her, Chul haeng;Yun, Byoeng gyu;Kim, Dae wook
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • Recently, the need for technology development of commercial vehicle fuel consumption has emerged. Fuel economy improvement of transport equipment and transportation efficiency, and increasing attention to the logistics cost reduction measures. Increasing attention to the logistics cost reduction measures by fuel economy improvement of transport equipment and transportation efficiency. In this study, we have installed aerodynamic reduction device (side skirt, boat tail) to 14.5 ton cargo trucks and 45 ft tractor-trailers. And the fuel consumption was compared installed before and after. Fuel economy assessment for the aerodynamic reduction value device was tested by modifying the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test in according domestic situation. Greenhouse gas reductions were calculated in accordance with the scenario, including fuel consumption test results. When the 14.5 ton cargo trucks has been equipped with side skirts and boat tail, it confirmed the improvement in fuel efficiency of 4.72%. One Heavy-duty truck's the annual greenhouse gas reductions value are $6.86ton\;CO_2\;eq$. And if applying the technology to more than 50% of registered 15 ton trucks, greenhouse gas reductions are calculated as $686,826ton\;CO_2\;eq./yr$.

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

An Analysis of Greenhouse Gas Emission and Role of Gas Generation in Electric Sector (발전부문 온실가스배출과 가스발전의 역할 분석)

  • Kang, Hee-Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.11-16
    • /
    • 2006
  • The purposes of this study is to develop a domestic MARKAL(MARKet ALlocation) model with construction of database system to find the technology mix for the electricity generation market in Korea. The MARKAL model is officially used for national energy system optimization in the International Energy Agency(IEA), and the role is becoming more important in relation to analyze the greenhouse gas mitigation potential and to evaluate the technologies. Four scenarios specially emphasized on the greenhouse gas reduction and technology mix of electric generation were applied, each of them covering the analysis periods between 2004 and 2040.

  • PDF

A Study on the Model of Competitive Electricity Market Considering Emission Trading (온실가스 배출권 거래제도를 고려한 경쟁적 전력시장 모형 연구)

  • Kim, Sang-Hoon;Lee, Kwang-Ho;Kim, Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1496-1503
    • /
    • 2009
  • The United Nations Framework Convention on Climate Change (UNFCCC) is an international environmental treaty to stabilize greenhouse gas concentrations in the atmosphere. In order to fulfil the commitments of the countries in an economically efficient way, the UNFCCC adapted the emission trading scheme in the Kyoto Protocol. If the UNFCCC's scheme is enforced in the country, considerable changes in electric power industry are expected due to the imposed greenhouse gas emission reduction. This paper proposes a game theoretic model of the case when generation companies participate in both competitive electricity market and emission market simultaneously. The model is designed such that generation companies select strategically between power quantity and greenhouse gas reduction to maximize their profits in both markets. Demand function and Environmental Welfare of emission trading market is proposed in this model. From the simulation results using the proposed model the impact of the emission trading on generation companies seems very severe in case that the emission prices are significantly high.

Technology Trends of Fuel Cell Power Plant Based on Biogas Fuel (바이오가스 연료기반 연료전지발전 기술동향)

  • Lee, Jong-Gyu;Jeon, Jae-Ho;Lee, Jong-Yeon
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.5-14
    • /
    • 2008
  • The target for the reduction of $CO_2$ emissions, as specified in the Kyoto Protocol, can only be achieved by an extended use of renewable fuels and the increasing of the energy efficiency. The energy generation from waste gases with a reasonable content of methane like biogas can significantly contribute to reach this target. A further reduction of greenhouse gas emissions is possible by increasing the electrical efficiency using progressive technologies. Fuel cells can be highly energy conversion devices. Utilizing biogas as the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with carbon monoxide in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high-temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells.

  • PDF

An Analysis on Korean Nuclear Power's Contribution to the GHG Emission Reduction and the Economic Effect (한국 원자력발전의 온실가스 저감 기여도 및 경제적 효과 분석)

  • Cho, Byung-Oke;Kim, Shin-Jong;Kim, Jum-Su
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.203-214
    • /
    • 2010
  • This study is to assess the reduction of greenhouse gas emission and economic contribution by operating nuclear power plants in Korea. According to the results of applying greenhouse gas emission coefficients to the current nuclear power generation and the estimated nuclear power generation of national energy master plan, it is confirmed quantitatively that nuclear power contributes to reducing greenhouse gas emission, controlling inflation, and substituting import of fossil energies. For the reliable and cost-effective supply of energy and the active respondency to climate change, a continuous expansion of nuclear power is implied to be necessary.

Fuel Conversion to Renewable Energy Analysis of the Impact on the Horticulture in the Agricultural Sector -Mainly Wood Pellets- (농업부문에서 신재생에너지로의 연료전환이 시설원예에 미치는 영향 분석 -목재펠릿을 중심으로-)

  • Yoon, Sung-Yee;Kim, Tae-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.531-547
    • /
    • 2014
  • This study analyzed the effect of Greenhouse of wood pellet fuel conversing from Diesel. Analyzed through a life cycle assessment of greenhouse gas emissions of carbon dioxide for the environmental assessment, In evaluation of the Ministry of the Environment, analyzed through the life cycle assessment of carbon dioxide emissions of the greenhouse gas and, In the case of economic evaluation, we analyzed the investment payback period to the total revenue generated by each of the calculated incentive based on the RHI and institutions reduction projects a reduction of costs associated with the reduction of fuel costs.

Estimation of Greenhouse Gas Emissions as Highway Design Types by Using Driving Simulator (차량시뮬레이터를 활용한 도로기하구조 조건별 CO2 산정 연구)

  • Chong, Sang Min;Lee, Jong-Hak;Choi, Jaisung;Kim, Jong-Min;Noh, Kwan-Sub
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.129-136
    • /
    • 2014
  • PURPOSES : This study devotes its energies to estimate greenhouse gas emissions for types of horizontal highway designs. METHODS : This paper suggested two types of road scenarios, scenario 1 is made by the lack of road design consistency. Beside scenario 1, scenario 2 is made by good road design. For comparisons of greenhouse gas emissions, driving simulator was used. RESULTS : Emission rates of road scenario 1 are 1.4 times higher than scenario 2 in the driving simulator. CONCLUSIONS : This study may have important implications for contributing to the application of road alignment technology for reduction of greenhouse gases as quantifying the correlations between greenhouse emissions and various road alignments. Consequently, this study will help road designers determine which roads are best alternatives in the process of choosing the roads in the future in terms of environmental benefits.

Greenhouse Gas Management Policy during Construction Execution Phase -Focused on Green Building Rating Systems and Japanese Case- (건축물 시공단계에서의 온실가스 배출 관리 방안 -국내외 친환경 인증제도와 일본 현장의 대응 방안을 중심으로-)

  • Song, Sang Hoon
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.139-150
    • /
    • 2010
  • Until now, the eco-friendly construction (green construction) has been focused on reducing environmental impacts in use(operation and maintenance) phase. Considering the environmental influence along the life cycle of construction project, the impact in execution phase is rather lower than that in use phase. However, that impact is thought to be greatly decreased by well-organized activities. Based on its urgency and requirement for timely action, this study aimed to discuss the greenhouse gas (GHG) reduction plan in execution phase from a broad perspective. To achieve this purpose, the green building rating systems in domestic and foreign countries have been reviewed, and the practice in Japan was investigated. In order to improve current on-site greenhouse gas management, the integration among construction phases, participants, and environmental factors, and institutional supports are required as well as the contractor's efforts.