• Title/Summary/Keyword: Greenhouse Environment

Search Result 1,695, Processing Time 0.024 seconds

Design of Optimum Section for Structural Members of Wide Span-Type and 2-Bay Venlo-Type Glass Green Houses (와이드 스팬형 및 2-Bay 벤로형 유리온실 구조부재의 최적단면 설계)

  • Park, Jong-Sup;Kim, Young-Hee;Seo, Kwang-Kye;Kim, Young-Sik
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.50-57
    • /
    • 2011
  • This study investigates the structural safety of typical greenhouse to be utilized for developing plant factory. New long-span greenhouse systems were presented according to the results of structural analyses performed by finite-element program, ABAQUS. Reasonable values of design loads such as wind and snow loads in the Greenhouse Design Specifications (1995) were applied to check the new greenhouse systems. It was concluded that the new greenhouse systems were consistently safe enough to resist to both wind load and snow load. The new greenhouse system can be used to make simple and economic plant factory.

Estimation of Surplus Solar Energy in Greenhouse (II) (온실내 잉여 태양에너지 산정(II))

  • Suh, Won-Myung;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Kim, Hyeon-Tae;Km, Yong-Ju;Yoon, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.83-92
    • /
    • 2011
  • This study is about an analysis of surplus solar energy by important greenhouse type using Typical Meteorological Year (TMY) data which was secured in order to provide basic data for designing an optimum thermal storage system to accumulate surplus solar energy generated in greenhouses during the daytime. The 07-auto-1 and 08-auto-1 types showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~29.0% regardless of greenhouse type. About 54.0~225.0% and 53.0~218.0% of required heating energy will be able to be supplemented respectively according to the greenhouse types. The 07-mono-1 and 07-mono-3 types also showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~26.0% and 21.0~27.0% respectively by greenhouse type. About 57.0~211.0% and 62.0~228.0% of required heating energy will be able to be supplemented by greenhouse type. Except for Daegwallyeong and Suwon area, other regions can cover heating energy only by surplus solar energy, according to the study.

Development of Device Measuring Real-time Air Flow in Greenhouse (온실 공기유동 계측 시스템 개발)

  • Noh, Jae Seung;Kwon, Jinkyoung;Kim, Yu Yong
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • This study was conducted to develop a device for measuring the air flow by space variation through monitoring program, which acquires data by each point from each environmental sensor located in the greenhouse. The distribution of environmental factors(air temperature, humidity, wind speed, etc.) in the greenhouse is arranged at 12 points according to the spatial variation and a large number of measurement points (36 points in total) on the X, Y and Z axes were selected. Considering data loss and various greenhouse conditions, a bit rate was at 125kbit/s at low speed, so that the number of sensors can be expanded to 90 within greenhouse with dimensions of 100m by 100m. Those system programmed using MATLAB and LabVIEW was conducted to measure distributions of the air flow along the greenhouse in real time. It was also visualized interpolated the spatial distribution in the greenhouse. In order to verify the accuracy of CFD modeling and to improve the accuracy, it will compare the environmental variation such as air temperature, humidity, wind speed and $CO_2$ concentration in the greenhouse.

Persistent Organic Pollutants (POPs) Residues in Greenhouse Soil and Strawberry Organochlorine Pesticides (딸기 시설재배지 토양 및 농산물 중 잔류성유기오염물질(POPs)의 잔류량 - 유기염소계 농약)

  • Lim, Sung-Jin;Oh, Young-Tak;Jo, You-Sung;Ro, Jin-Ho;Choi, Geun-Hyoung;Yang, Ji-Yeon;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.6-14
    • /
    • 2016
  • BACKGROUND: Residual organochlorine pesticides (OCPs) are chemical substances that persist in the environment, bioaccumulate through the food web, and pose a risk of causing adverse effect to human health and the environment. They were designated as persistent organic pollutants (POPs) by Stockholm Convention. Greenhouse strawberry is economic crop in agriculture, and its cultivation area and yield has been increased. Therefore, we tried to investigate the POPs residue in greenhouse soil and strawberry.METHODS AND RESULTS: Extraction and clean-up method for the quantitative analysis of OCPs was developed and validated by gas chromatography (GC) with electron capture detector (ECD). The clean-up method was established using the modified quick, easy, cheap, effective, rugged, and safe(QuEChERS) method for OCPs in soil and strawberry. Limit of quantitation (LOQ) and recovery rates of OCPs in greenhouse soil and strawberry were 0.9-6.0 and 0.6-0.9 μg/kg, 74.4-115.6 and 75.6-88.4%, respectively. The precision was reliable sincerelative standard deviation (RSD) percentage (0.5-3.7 and 2.9-5.2%) was below 20, which was the normal percent value. The residue of OCPs in greenhouse soil was analyzed by the developed method, and dieldrin, β-endosulfan and endosulfan sulfate were detected at 1.6-23, 2.2-28.4 and 1.8-118.6 μg/kg, respectively. Those in strawberry were not detected in all samples.CONCLUSION: Dieldrin, β-endosulfan and endosulfan sulfate in a part of investigated greenhouse soil were detected. But those were not detected in investigated greenhouse strawberry. These results showed that the residue in greenhouse soil were lower level than bioaccumulation occurring.

Effects of Shading Rate and Method of Inside Air Temperature Change in Greenhouse (차광율 및 차광방법이 온실내부의 온도변화에 미치는 영향)

  • 이석건;이현우;김길동;이종원
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.80-87
    • /
    • 2001
  • This study was conducted to provide basic data for the design of shading facility of greenhouse. The proper distance between external shading screen and roof surface, transmissivity of shading materials, and shading effects of external and internal shadings were analyzed. About a distance of 10 cm between inclined external shading screen and roof surface was enough to guarantee the external shading effect in the greenhouse without roof vent. The inside temperature of greenhouse installed with 85% internal shading screen was lower the maximum of 4$^{\circ}C$ and mean of 2$^{\circ}C$ than that with 55% internal shading screen in both natural ventilation and no ventilation condition. The difference of soil temperature between shading and no shading greenhouse was great, but the difference by shading rate or shading method was small. The performance of external shading for controlling inside temperature down was superior to that of the internal shading. The externally inclined shading screen parallel to the roof surface of greenhouse was more effective than the externally horizontal shading screen in controlling inside temperature of greenhouse without roof vent.

  • PDF

Growth of Green Pepper(Capsicum annuum L.) in a Plastic Greenhouse Covered with Anti-dropping Plasma Film (방적성 Plasma 처리 필름으로 피복된 플라스틱온실의 풋고추 생육)

  • Chun, Hee;Kim, Kyung-Je;Kim, Jin-Young;Kim, Hyun-Hwan;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.156-160
    • /
    • 2000
  • The Plasma film treated with a high electric voltage was developed to enhance flow down of condensation drops on inside plastic film. Arch type greenhouse framed with iron pipe of 25mm diameter defand 1.5mm thickness were covered with either the developed plasma film or surfactant film(control). Green pepper seedlings raised for 40 days in plug trays were transplanted at a density of 110cm by 30cm in each greenhouse. The mount of condensational water on film surface, generated by 7$0^{\circ}C$ water bath chimney systems and flew down, was collected and measured. The amount of collected water after 150 minutes was 2.56 mL.100c $m^{-2}$ and 0.94mL.100c $m^{-2}$ , respectively, in the plasma film and surfactant film-covered greenhouses. The amount of condensational water drops attached on the cover at 08:20 a.m. at 60 days filter covering was 0.34mL.100c $m^{02}$ and 0.32mL.100c $m^{-2}$ , respectively, in the plasma film- and surfactant film-covered greenhouses. Solar irradiance transmitted into greenhouse was 2.0% higher in the greenhouse covered with the plasma film tan that in the greenhouse covered with the surfactant film. Air temperature in the plasma film-covered greenhouse was higher than the surfactant film-covered greenhouse by 0.5$^{\circ}C$. However, there was no difference in relative humidity between the two greenhouse. Plant height, leaf area, dry weight and early yield showed no significant differences.s.

  • PDF

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Effect of Culture Methods on Growth and Mineral Contents in Chinese Toon (Cedrela sinensis A. Juss) (재배방법이 참죽나무 잎의 생육 및 무기물 함량에 미치는 영향)

  • Shin, Yong Seub;Lee, Mun Jung;Lim, Yang Sook;Lee, Eun Sook;Ahn, Joon Hyung;Han, Youn Yol;Lim, Jae Ha;Park, So Deuk;Chai, Jang Hea
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.392-397
    • /
    • 2012
  • In this study, we investigated the changes of growth characteristics, mineral and chlorophyll content of young leafy vegetable of Chinese toon grown under greenhouse and open fields. Results showed that growth of young leafy vegetable of Chinese toon was somewhat accelerated in greenhouse compared to the open field. In case of apical bud growth, several parameters such as plant height, number of branch, fresh weight and chlorophyll content showed similar tendency in both greenhouse and open field. In the changes of minerals, N content in apical buds recorded significant increase to 3.1 times compared to that of later buds. Its content was 1.2 times higher in greenhouse than that of open field. Mineral contents including P, Ca, Mg and Fe were significantly increased in greenhouse. Highest ascorbic acid content was observed in lateral buds grown in greenhouse and then it was followed such as lateral bud in open field, apical bud in open field, and apical bud in greenhouse, in turn. These results indicate that greenhouse culture could be applicable to new culture in order to produce young leafy vegetable of Chinese toon with high quality.

Greenhouse Gas Management Policy during Construction Execution Phase -Focused on Green Building Rating Systems and Japanese Case- (건축물 시공단계에서의 온실가스 배출 관리 방안 -국내외 친환경 인증제도와 일본 현장의 대응 방안을 중심으로-)

  • Song, Sang Hoon
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.139-150
    • /
    • 2010
  • Until now, the eco-friendly construction (green construction) has been focused on reducing environmental impacts in use(operation and maintenance) phase. Considering the environmental influence along the life cycle of construction project, the impact in execution phase is rather lower than that in use phase. However, that impact is thought to be greatly decreased by well-organized activities. Based on its urgency and requirement for timely action, this study aimed to discuss the greenhouse gas (GHG) reduction plan in execution phase from a broad perspective. To achieve this purpose, the green building rating systems in domestic and foreign countries have been reviewed, and the practice in Japan was investigated. In order to improve current on-site greenhouse gas management, the integration among construction phases, participants, and environmental factors, and institutional supports are required as well as the contractor's efforts.

The Effect of Greenhouse Climate Change by Temporary Shading at Summer on Photo Respiration, Leaf Temperature and Growth of Cucumber (여름철 수시차광에 의한 온실 환경변화가 오이의 광호흡, 엽온, Thermal breakdown 등 생육에 미치는 영향)

  • Kim, Dong Eok;Kwon, Jin Kyung;Hong, Soon Jung;Lee, Jong Won;Woo, Young Hoe
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.306-312
    • /
    • 2020
  • This study was conducted to investigate cucumber plants response to greenhouse environments by solar shading in greenhouse in the summer. In order to estimate heat stress reduction of cucumber plants by solar shading in greenhouse, we measured and analyzed physiological conditions of cucumber plants, such as leaf temperature, leaf-air temperature, rubisco maximum carboxylation rate, maximum electron transport rate, thermal breakdown, light leaf respiration, etc. Shading levels were 90% mobile shading of full sunlight, 40% mobile shading of full sunlight and no shading(full sunlight). The 90% shading screen was operated when the external solar radiation is greater than 650 W·m-2. Air temperature, solar radiation, leaf temperature, leaf-air temperature and light leaf respiration in the 90% shading of full sunlight was lower than those of 40% shading and no shading. Rubisco maximum carboxylation rate, arrhenius function value and light leaf respiration of the 90% shading were significantly lower than those of 40% shading and no shading. The thermal breakdown, high temperature inhibition, of 90% shading was significantly higher than that of 40% shading and no shading. Therefore, these results suggest that 90% mobile shading made a less stressful growth environment for cucumber crops.