• Title/Summary/Keyword: Green-Ampt model

Search Result 42, Processing Time 0.023 seconds

Estimation of Ponding Times for various Soil Textures and Ponding Depths -Using the Green-Ampt Infiltration Model- (토성별 특정 수심의 저류된 유출수의 지하침투 소요시간 산정에 관한 연구 -Green-Ampt 방정식 적용을 중심으로-)

  • 권경호;안동만
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.170-180
    • /
    • 2000
  • The surface-drainage system, which consists of bio-swale and detention-infiltration Basins and carries out the function of temporary detention-infiltration of runoff, is defined as the "natural drainage system". It is an environmentally sound and economically beneficial practice to reduce run-off by retaining it in swales as much as possible and letting run-off infiltrate into the ground. In order to estimate appropriate capacity of swales, it is necessary to know how long will it take for certain depths of water to infiltrate. The ponding times, or infiltration times, of various depths and of various soil textures, could be estimated with the Green-Ampt Infiltration Model. Included soil textures are loamy sand, sandy loam, loam, silty loam, sandy clay loam and clay loam. Ponding depths are from 10cm to 100cm intervals. Newton-Raphson method is used for the solution of the Green-Ampt equation by a computer program. The computer program was written with the FORTRAN Developer 4.0 v.. Selected ponding depth is acceptable when the sum of the ponding time and the breeding time of mosquitoes is less than the tolerance period of innundation of grasses and trees.and trees.

  • PDF

Modeling Effective Rainfall for Upland Crops (밭에서의 유효우량 산정모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 1993
  • A model for estimating daily effective rainfall of upland crops was developed. The infiltration process was described by Green-Ampt infiltration model developed by Chu(1978). The model considers delayed surface ponding and surface detention storage under a uniform soil profile. The Green-Ampt parameters, that is, average hydraulic conductivity and average capillary pressure head on a sandy loam soil were determined from field experiment using Air-entry permeameter developed by Bouwer(1966). The model was verified by comparing measured and simulated surface runoff. The ratios of effective rainfall to total rainfall for red pepper, soybean, sesame and Chinese cabbage were evaluated using Borg's root growth model( 1986) respectively. The followings are a summary of this study results; 1.In a sandy loam soil average hydraulic conductivity was 3.28cm/hr and average capillary pressure head was 3.00cm. 2.The root growth of upland crops could be expressed by Borg's root growth model successively. 3.The measured and simulated surface runoff was agreed well with each other. 4.As the rainfall amount was increased, the ratio of effective rainfall to total rainfall was decreased exponentially till a certain growing period.

  • PDF

A Study of Stability Analysis on Unsaturated Weathered Slopes Based on Rainfall-induced Wetting (강우시 습윤에 의한 불포화 풍화토의 사면 안정 해석 연구)

  • 김재홍;박성완;정상섭;유지형
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.123-136
    • /
    • 2002
  • The infiltration of prolonged rainfall causes shallow slope failures on surficial slopes. Experiments performed on soil-water characteristic curves in weathered soils of three different types(SW, SP, SM) were used to construct a general equation for the soil-water characteristic curve. Based on this, the saturated depth by Green & Ampt model was compared with the results of numerical analyses and the range of application of Green & Ampt model was evaluated. It was found that the saturated depth occurred by infiltration on the surface of slopes has an inf1uence on the surficial stability of slopes md, the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of weathered soils was found to be a proper analysis for shallow slope failures due to rainfall.

Impact of Different Green-Ampt Model Parameters on the Distributed Rainfall-Runoff Model FLO-2D owing to Scale Heterogeneity (분포형 강우-유출 모형에서 토양도 격자크기 효과가 Green-Ampt 모형의 매개변수와 모의된 강우손실에 미치는 영향)

  • Hwang, Ji-hyeong;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.15-23
    • /
    • 2020
  • The determination of soil characteristics is important in the simulation of rainfall runoff using a distributed FLO-2D model in catchment analysis. Digital maps acquired using remote sensing techniques have been widely used in modern hydrology. However, the determination of a representative parameter with spatial scaling mismatch is difficult. In this investigation, the FLO-2D rainfall-runoff model is utilized in the Yongdam catchment to test sensitivity based on three different methods (mosaic, arithmetic, and predominant) that describe soil surface characteristics in real systems. The results show that the mosaic method is costly, but provides a reasonably realistic description and exhibits superior performance compared to other methods in terms of both the amount and time to peak flow.

Infiltration Analysis for Surficial Stability Evaluation of Two-layered Slopes (2층 지반의 표면파괴에 대한 안정성 평가를 위한 침투거동 해석)

  • Cho Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.45-53
    • /
    • 2005
  • Shallow slope failures in residual soil during periods of prolonged infiltration are common over the world. Therefore, this study examines an approximate method to estimate the influence of infiltration on surficial stability of slopes by one-dimensional infiltration model. Modified GAML model based on the Green-Ampt model was extended to predict the infiltration behavior of two-layered slope. Then, the model has been considered to evaluate the likelihood of shallow slope failure which is induced by a particular rainfall event that accounts for the rainfall intensity and duration for various return periods in two-layered soil profile. The results obtained from the approximate method were compared with those obtained from numerical analyses. According to the results, with the use of properly estimated input parameters, the proposed method was found to give good results that agree reasonably well to those of the more rigorous finite element analyses.

Estimation of Saturation Depth by Reflecting Water-redistribution Phenomena at a Natural Slope (수분 재분포를 고려한 강우 침투 시 자연 사면에서의 포화깊이 산정)

  • Kim, Woong-Ku;Chang, Pyoung-Wuck;Cha, Kyung-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.71-79
    • /
    • 2006
  • In Korea, most landslides occurred during the rainy season and had a shallow failure plane parallel to the slope. For these types of rainfall-induced failures, the most important factor triggering slope unstability is decrease in the matric suction of unsaturated soils with increasing saturation depth by rainfall infiltration. The saturation depth was readily estimated using modified Green-Ampt model proposed by Chu et al. (Chu Model) at present. But Chu Model involves some problems for application, because water-redistribution phenomena were not effected. So the modified Chu Model (MCGAM) which reflect water redistribution phono mens was developed. The results showed that the MCGAM had a better agreement with measured volumetric water contents than existing Chu Model.

Rainfall Excess Model for Forest Watersheds (산지유역의 초과우량 추정 모형)

  • 남선우;최은호
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.351-361
    • /
    • 1990
  • Considering the hydrological los components such as evapotranspiration, interception, surface storage and infiltration, a rainfall excess model for forest watersheds is derived. The Morton model is adopted to estimate the evapotranspration under the wetted environmental conditions. Canopy effects and ground cover interception storage rates are used to determine the net rainfall rates arrived on the surface soil. The infiltration capacity on the permeable surface is estimated from the revised Green-Ampt model derived for the natural unsteady rainfall events. The rainfall excess model derived is applied with the data from Jangpyung watershed, one of the representative watersheds of IHP. Parameters which are calibrated with the data from ten storms, the hydrometeorological, land use and soil informations, and other researchers' papers are presented.

  • PDF

Modeling Infiltration and Redistribution for Multistorm Runoff Events

  • 유동렬;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.74-77
    • /
    • 2000
  • Infiltration and water flow in the upper soil layer of a deep water table aquifer are modeled for multistorm runoff events. The infiltration process is developed using the sharp wetting front model of Green and Ampt, and the following redistribution process is modeled using the gravity drained rectangular approximation. The Brooks-Corey model [Brooks and Corey, 1966] is adopted to relate the effective soil saturation, the tension head, and the unsaturated hydraulic conductivity Firstly, the infiltration and redistribution model is developed for a single stom runoff event. Then a couple of events combined for multistorm runoff events. In the later case, infiltration rate of the second rainfall is strongly influenced by the length of the rainfall hiatus and soil moisture profile.

  • PDF

Probabilistic Stability Analysis of Unsaturated Soil Slope under Rainfall Infiltration (강우침투에 대한 불포화 토사사면의 확률론적 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.37-51
    • /
    • 2018
  • The slope failure due to the rainfall infiltration occurs frequently in Korea, since the depth of the weathered residual soil layer is shallow in mountainous region. Depth of the failure surface is shallow and tends to pass near the interface between impermeable bedrock and soil layer. Soil parameters that have a significant impact on the instability of unsaturated slopes due to rainfall infiltration inevitably include large uncertainties. Therefore, this study proposes a probabilistic analysis procedure by Monte Carlo Simulation which considers the hydraulic characteristics and strength characteristics of soil as random variables in order to predict slope failure due to rainfall infiltration. The Green-Ampt infiltration model was modified to reflect the boundary conditions on the slope surface according to the rainfall intensity and the boundary condition of the shallow impermeable bedrock was introduced to predict the stability of unsaturated soil slope with shallow bedrock under constant rainfall intensity. The results of infiltration analysis were used as inputs of infinite slope analysis to calculate the safety factor. The proposed analysis method can be used to calculate the time-dependent failure probability of soil slope due to rainfall infiltration.

A Comparative Study of Surficial Stability Analyses in Unsaturated Soil Slopes (불포화 토사사면의 얕은파괴 해석에 대한 비교 연구)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.135-143
    • /
    • 2001
  • 강우에 의한 잔류토에서의 얕은 사면파괴는 세계적으로 흔히 볼 수 있는 사면파괴의 형태이다. 본 연구에서는 침투가 사면 표면의 안정에 미치는 영향을 평가하기 위해 한계평형법을 이용하는 무한사면 해석법을 연구하였다. 재현기간에 따른 강우강도가 지속기간이 고려되는 임의의 강우에 의해 유발되는 얕은 사면파괴의 가능성을 평가하기 위해서 Green-Ampt 모델에 바탕을 둔 간략법들이 적용되었다. 간략법들에 의한 결과들과 비교하기 위하여 일련의 수치해석이 수행되었다. 그 결과에 의하면 적절하게 선택된 입력값을 사용하면 수정간략법이 더욱 엄밀한 해석법인 유한요소해석과 근사한 합리적인 결과를 줌을 알 수 있다.

  • PDF