• Title/Summary/Keyword: Green tea seed oil

Search Result 13, Processing Time 0.017 seconds

Analysis of Seed Oil Fatty Acids and Their Effect on Lipid Accumulation and Leptin Secretion in 3T3-L1 Adipocytes (헥산 추출 종실유의 지방산 분석 및 3T3-L1 지방세포의 지방 축적과 랩틴 분비에 미치는 영향 연구)

  • Kim, Tae Woo;Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Lee, Jeong Il;Choe, Myeon
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • In this study, we evaluated the fatty acid composition and physiological activities of oils extracted from eight types of seeds, pepper (Capsicum annuum L.), green tea (Camellia sinensis L.), perilla (Perilla frutescens var. japonica Hara), peanut (Arachis hypogaea L.), cotton (Gossypium indicum LAM.), sesame (Sesamum indicum L.), walnut (Juglans regia L.), and safflower (Carthamus tinctorius L.). The composition and quality analysis showed that the oils were potentially suitable for foo-grade applications. The composition analysis showed that the oils were mostly composed of unsaturated fatty acids including linoleic acid and oleic acid. In 3T3-L1 adipocytes, green pepper, perilla, and peanut seed oils inhibited lipid accumulation, and green pepper, perilla, peanut, sesame, walnut, and safflower seed oils induced leptin secretion. These results show that the inhibitory effect of edible seed oils on lipid accumulation, and induction of leptin secretion may be useful for obesity management.

Effectiveness and Preparation of Nano-emulsion of a Rapeseed Oil Extract Originated from Jeju with PIT Emulsifying System (PIT유화시스템을 이용한 제주산 유채씨앗 오일추출물의 나노에멀젼의 제조 및 효과)

  • Joo, Se-Jin;Kim, Hack-Soo;Lee, Jeong-Koo;Lee, Min-Hee;Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.486-494
    • /
    • 2012
  • Nano-emulsion with phase inversion temperature (PIT) emulsifying system was prepared to use rapeseed oil from originating Jeju in order to apply various cosmetic applications. Natural rape seed oil (NRSO) extraction was extracted using n-hexane as a solvent. NRSO extract showed a light yellowish color of viscous liquid as well as yield was $43{\pm}2.5%$. Acid value was $2.76{\pm}0.5$ and gravity was $0.89{\pm}0.05$. Droplet size of PIT-Yuche-NE with 20wt% of rapeseed oil was 50-120nm (average: $82{\pm}5.8nm$) and zeta potential was -29.5mV. It was thermodynamically good stable emulsion due to $(PEG)_{5-30}$fattyacidether. Some conclusions from the result of characteristic experiment were obtained as follows. First, the anti-oxidative activity was measured by free radical scavenging activity using DPPH (1,1-diphenyl-2-picrylhydrazyl radical). Anti-oxidative activity of PIT-Yuche-NE was $37.2{\pm}6.7%$ on 10mg/mL compared with PIT-Toco-NE (Natural tocopherol nano-emulsion, $28.8{\pm}6.5%$ on 10 mg/mL) and PIT-Nokcha-NE (Green tea extract nano-emulsion, $29.6{\pm}7.2%$ on 10mg/mL). Second, the collagen synthesis activity of PIT-Yuche-NE was $148{\pm}15.2%$ compared with PIT-Toco-NE (Natural tocopherol nano-emulsion, $121{\pm}13.5%$ on 10mg/mL) and PIT-Nokcha-NE (Green tea extract nano-emulsion, $95{\pm}12.7%$ on 10mg/mL). Third, the effectiveness of moisturizing activity of Yuche-CRM with Aramo-TS after 6 hours increase $47{\pm}3.9%$ (*p-value£0.05, n=7) whereas Both Toco-CRM was $30{\pm}5.2%$ (*p-value£0.05, n=7) and Nokcha-CRM was $35{\pm}4.5%$. Therefore, Yuche-CRM has higher moisturizing effect than other two creams. Finally, Nano-emulsion stabilizing rapeseed oil using PIT emulsifying system of this study can be used to apply cosmetics industry and pharmaceutical industry.

β-Carotene Content in Selected Agricultural Foods (조미료류, 채소류, 과일류 등의 농산식품에 함유된 베타카로틴 함량 분석)

  • Shin, Jung-Ah;Choi, Youngmin;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.418-424
    • /
    • 2015
  • The content of ${\beta}$-carotene in agricultural foods, such as seasonings, tea, vegetables, cereals, nuts & seeds, oils & fats, and fruits, were quantitatively analyzed using reversed-phase HPLC with an UV/visible detector. Standard reference material (SRM) 2385 was used as a control material to validate measurement of ${\beta}$-carotene in this study. Recovery percentage and relative standard deviation of ${\beta}$-carotene in SRM 2385 were 102% and 1.73%, respectively. Vegetables and tea contained relatively high concentrations of ${\beta}$-carotene (young barley powder, $17,293.95{\mu}g/100g$; raw young barley, $2,755.15{\mu}g/100g$; dried green tea leaves, $13,671.85{\mu}g/100g$; green tea powder, $7,579.04{\mu}g/100g$). Contents of ${\beta}$-carotene in nuts & seeds as well as oils & fats ranged from $11.32{\mu}g/100g$ in almond products (roasted with salt) to $58.56{\mu}g/100g$ in perilla seed oil. Among 20 fruits, a high content of ${\beta}$-carotene was found in apricots (raw), which contained $2,280.35{\mu}g/100g$.