• Title/Summary/Keyword: Green sheet

Search Result 189, Processing Time 0.023 seconds

Development of High frequency Multi-layered Ceramic Chip Inductor (고주파 적층형 칩 인덕터 개발)

  • 강남기;임욱;유찬세
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.148-150
    • /
    • 2001
  • 본 논문에서는 소결 후 20 ㎛ 정도의 두께를 갖는 ceramic green sheet를 이용하여 초소형(1005) 칩 인덕터를 제작하였다. 인덕터의 패턴을 최적화함에 있어서 HP사의 HFSS(High Frequency Structure Simulator)를 이용하였고 이 과정에서 인덕터의 전기적 특성, 등가회로등을 추출하였다. 칩 인덕터를 제작함에 있어서 모든 적층 공정을 최적화하였다. 실제 제작한 인덕터와 simulation 결과의 관계성을 도출하고 이를 통해 목표 용량을 tuning하였다. 이와 같은 과정을 통해 1-39 nH의 인덕턴스를 갖는 1005크기의 칩 인덕터를 개발하였고, 이를 선진사의 제품과 비교할 때 우수한 전기적 특성을 나타내었다.

Characteristic Analysis of BIPV Module according to Rear Materials (후면부재에 따른 BIPV 모듈의 특성 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. Building integrated photovoltaic(BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influenced on the reflection by rear materials such as white back sheet and the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. In this study, to use as suitable building materials into environmentally friendly house like green home, characteristic analysis of BIPV module according to rear materials achieved. Electrical output of PV module with white back sheet is high about 10% compared to other pv module because of 83% reflectivity of white back sheet compared to 8.4% reflectivity of other PV modules with different rear materials(black back sheet and glass). In the result of outdoor experiment during a year, electrical output of four different PV module is decreased about 3.72%.

Preparation and Characteristic of Sheet Molding Compound using Unsaturated Polyester Resin with Low Profile Agent of Polystyrene (저수축제 폴리스틸렌과 불포화 폴리에스터 수지를 사용한 Sheet Molding Compound 제조 및 특성)

  • Bae, Gi Boong;Lee, Sang Goo;Yoon, Hong Jin;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.588-593
    • /
    • 2012
  • Compatibility of unsaturated polyester (UP) and low profile agent (LPA) of polystyrene (PS) have been investigated under various mixing conditions such as the ratio of UP and LPA, mixing time, mixing temperature, and input amount of 2nd UP. It was possible to obtain mixture with small particle size and low phase separation in condition of 35 g of LPA, 25 g of 1st UP input, 5 min of mixing time, 1700 rpm of mixing speed, and 45 g of 2nd UP input. It was found that compatibility of UP and LPA was very sensitive to mixing conditions. In addition, molded sample using sheet molding compound prepared by stable mixing condition appeared good properties such as low water adsorption, low shrinkage, and high gloss.

Sheet fabrication of Ni-WC anode for Molten Carbonate Fuel Cell by Tape Casting Method (테이프 캐스팅법에 의한 MCFC Anode용 Ni-WC 박판 제조)

  • Choe, Jin-Yeong;Jeong, Seong-Hoe;Jang, Geon-Ik
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.715-720
    • /
    • 2000
  • By the mechanical alloying method. Ni-WC composite materials were prepared to improve the deformation-resistance for creep and sintering of Ni-anode at the operating temperature of $650^{\circ}C$. Mechanically alloyed powder w was initially fabricated by ball milling for 80hr, and then amorphization was occurred by the destruction of ordered crystals based on XRD analysis. In order to investigate the electrochemical performance and sheet characteristics of Ni-WC anode, tape casting process was adopted. Finally, the obtained sheet thickness of Ni- we after sintering at $1180^{\circ}C$ for 60 minutes in $H_2$ atmosphere was O.9mm and the average pore size was $3~5{\mu\textrm{m}}$ with porosities of 55%. The second phase was not observed in Ni- W matrix while W particles were finely and uniformly distributed in Ni matrix. This fine and uniform distributed W particles in Ni matrix are expected to enhance the mechanical properties of Ni anode through the dispersion and solid solution hardening mechanisms.

  • PDF

Electromagnetic Wave Absorption Characteristics of Nanocrystalline FeCuNbSiB Alloy Flakes/Polymer Composite Sheets with Different Flake Thickness

  • Lee, Tae-Gyu;Kim, Ju-Beom;Noh, Tae-Hwan
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.155-160
    • /
    • 2009
  • This study examined the effects of a decrease in thickness of magnetic alloy flakes on the electromagnetic wave absorption characteristics of nanocrystalline $Fe_{73.5}Cu_1Nb_3Si_{15.5}B_7$ (at.%) alloy flakes/polymer composite sheets available for a quasi-microwave band. The thickness of FeCuNbSiB alloy flakes decreased to 1-2 $\mu$m with increasing milling time up to 24 h, and the composite sheet including alloy flakes milled for 24 h exhibited considerably enhanced power loss properties in the GHz range compared to the sheets having non-milled alloy powders. Although a considerable increase in loss factor upon milling was observed in the narrow frequency range of 4-6 GHz, there was no correlation between the complex permeability and flake thickness. However, the complex permittivity increased with increasing milling time, and there was good agreement between the milling time and the frequency dependences of the complex permittivity and power loss.

Adhesion Characteristic and Porosity Change of Alkali Silicate Impregnant of Concrete (Silicate계 콘크리트 함침제 도포에 따른 부착특성 및 공극변화)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Lim, Young-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.276-282
    • /
    • 2010
  • There are the impregnating layer formation by surface protective materials or impregnants and the adhesion method by polymer, FRP sheet or steel plate in the surface protective method of concrete structure. The surface impregnation method by impregnants improves the durability of concrete structure by modifying the structure of the concrete surface and also have a merit that can be shortly applied in place without the decrease of concrete surface appearance and is easily applied again. This study is interested in manufacturing the concrete surface impregnants including lithium and potassium silicate for the repair of the exposed concrete and the color concrete requiring the advanced function in view of the concrete appearance. The durability and porosity properties was tested for the review of application. The result of this study show that the effective content of silicate ranges 5 to 20% and the separate application of the first impregnant and the second impregnant is effective for the optimum performance. The adhesion in tension is slightly increased but the reinforcement of concrete substrate is slight. So, the concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

Control of Explosion Behavior in Micro Hole Using UV Laser on LTCC Green Sheets Containing Carbon Particles (카본을 첨가한 LTCC 그린 시트에서 UV 레이저를 이용한 미세 홀 터짐 현상 제어)

  • Kim, Shi Yeon;Ahn, Ik-Joon;Yeo, Dong-Hun;Shin, Hyo-Soon;Yoon, Ho Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.786-790
    • /
    • 2016
  • Hole explosion behaviors were observed during drilling fine holes with laser beam on the LTCC green bar of $320{\mu}m$ thick after lamination of green sheets prepared by tape casting of thick film process. The incidence of these hole explosions was inversely proportional to hole sizes. The incidence of hole explosion was 20 % number of hole with the size of $60{\mu}m$ exploded for the UV radiation, while the explosion did not appear for hole sizes over $100{\mu}m$. To prevent hole explosion behavior during laser-drilling of fine holes, carbon black powder was added as an additive in the LTCC composition, which has superior thermal durability. As a consequence, hole explosion rate was suppressed to 0.8 % for the hole size of $50{\mu}m$ green sheet with the carbon black amount of 10 weight % and the laser power of 3 watt. Added carbon is thought to reduce the heat-affected region during laser drilling.

The Effect of PID Generation by Components of the PV Module (태양전지 모듈의 구성 요소가 PID 발생에 미치는 영향)

  • Kim, Han-Byul;Jung, Tae-Hee;Kang, Gi-Hwan;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.760-765
    • /
    • 2013
  • PID (potential induced degradation) of PV module is the degradation of module due to the high potential difference between the front surface of solar cells and ground when PV modules operate under high humidity and temperature conditions. PID is generally derived from the positive sodium ions in front glass that are accumulated on P-type solar cells. Therefore, some papers for the electrical characteristic of only front components as glass, EVA sheet, solar cell under PID generation condition were revealed. In this paper, we analyzed the different outputs of module with PID by considering the all parts of module including the back side elements such as glass, back sheet. Mini modules with one solar cell were fabricated with the various parts on front and back sided of module. To generate PID of module in a short time, the all modules were applied.1,000 V in $85^{\circ}C$, 85% RH. The outputs, dark IV curves and EL images of all modules before and after experiments were also measured to confirm the main components of module for PID generation. From the measured results, the outputs of all modules with front glass were remarkably reduced and the performances of modules with back and front glass were greatly deteriorated. We suggest that the obtained data could be used to reduce the PID phenomenon of diverse modules such as conventional module and BIPV (building integrated photovoltaic) module.

Examination Conditions of Root Barrier for Green Roof System and Result of Intermediate Observation of Three Months against Representative Root Barrier (옥상녹화용 방근층의 방근성 시험조건 설정 및 주요 방근소재에 대한 3개월간의 중간관찰 결과)

  • Shin, Yun-Ho;Jang, Dae-Hee;Kim, Hyun-Soo;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.245-249
    • /
    • 2008
  • The purpose of this study is to test performances of 14 types of root barrier materials by applying testing plants and soils suitable for weather and natural features of Korea. For testing plants, Plioblastus pygmaed Mitford A. and Pyracantha angustifolia have been selected. For testing soil, mixture of pearlite and peat moss in 3:1 ratio(volume). Testing container has been fabricated with duplicated structure having inner and outer containers. And the outer container has 2 hinges on its side wall to allow opening and closing. Wet rock wool with 50mm in thickness has been inserted between inner and outer containers to allow root to penetrate through root barrier material and continue to grow. We planted 12 Plioblastus pygmaed Mitford A. and 4 Pyracantha angustifolia per one testing container. Three testing samples have been made for 1 type of root barrier material, which become a total 42 specimens. Planted testing samples have been installed within the greenhouse, which will be observed regularly for 2 years from now on. We started test from July 11, 2008 and had performed intermediate observations every month for initial 3 months. From the 3rd intermediate observation on Sept. 18, we confirmed that 6 types of root barrier materials have penetrated roots. Even though two types of them(EDPM Sheet, Polyethylene Sheet) have been generally used as root barrier materials for roof planting system, all of three testing samples have a lot of penetrated roots. This result proves that it is not reasonable to introduce testing methods of root barrier from Europe or Japan.

  • PDF