• Title/Summary/Keyword: Green peach aphid

Search Result 87, Processing Time 0.024 seconds

연초포장에서 발생하는 복숭아혹진딧물(Myzus persicae Sulz.)의 Esterase 분류

  • 채순용;김상석;정성은;장영덕
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.1
    • /
    • pp.49-56
    • /
    • 1999
  • Classification of esterase isozymes of the apterous green peach aphids (Myzus persicae Sulzer) collected in tobacco fields were investigated by the native polyacrylamide gel electrophoresis (PAGE). A total of twelve esterase bands were identified in adult apterous aphid, and the difference of enzyme band activity in the clones was observed at the first and second bands group. Esterases of green peach aphids reacted with specific substrate were more stained $\alpha$-naphthyl acetate than $\alpha$-naphthyl propionate, and $\alpha$-naphthyl acetate more than $\beta$-naphthyl acetate. Twelve esterases on the basis of inhibition by the three types of inhibitors (organophosphates: 2.5$\times$10$^{-3}$ M paraoxon, 4$\times$10$^{-3}$ M DFP; eserine sulfate : 2$\times$10$^{-3}$ M eserin; sulfhydryl reagents: 2$\times$10$^{-3}$ M p-HMB) were classified into three class, namely, cholinesterase (ChE) I, II, carboxylesterase (CE) and arylesterase (ArE), and these classes contained 3, 4, 3 and 2 isozymes, respectively.

  • PDF

Joint Toxic Action of Insecticide Mixtures to the Cupermethrin-and Pirimicarb-Selected Strains of Green Peach Aphid(Myzus pericae Sulzer) (Cypermethrin과 Pirimicarb 저항성계통 복숭아혹잔딧물에 대한 살충제문의 연합독작용)

  • 안용준;김길하;최승윤
    • Korean journal of applied entomology
    • /
    • v.28 no.1
    • /
    • pp.32-36
    • /
    • 1989
  • The joint toxic action of mixtures of cypermethrin or pirimicarb with one of other insecticides (acephate, cypermethrin, demeton-S-methyl and pirimicarb) on the cypermethrin or picimicarb-selected green peach aphid (Myzus persicae Sulzer)was investigated. The responses depended on the choice and ratios of insecticide combination. In the cypermethrin-selected strain bioas-say, mixtures of test insecticides showed no synergistic effect. On the other hand, the maxi-mum synergistic effects for the pirimicarb-selected strain were obtained at the 8 : 2 ratio of pirimicarb and demeton-S-methyl exhibited antagonistic effect.

  • PDF

Entomophthora planchoniana Cornu (Zygomycetes: Entomophthoraceae), the First Observed Pathogen of the Green Peach Aphid Myzus persicae in Korea (복숭아혹진딧물에서 발견된 국내 미기록 곤충병원성 곰팡이 Entomophthora planchoniana에 관한 보고)

  • Yoon, Cheol-Sik;Sung, Gi-Ho;Lee, Gun-Hyung;Park, Hyun-Soo;Lee, Jeang-Oon
    • The Korean Journal of Mycology
    • /
    • v.26 no.3 s.86
    • /
    • pp.403-406
    • /
    • 1998
  • An entomophthoraceous fungus, Entomophthora planchoniana, was found in populations of the green peach aphid, Myzus persicae, at Kunsan city on June 2, 1998. Occurrence of this species has never been recorded in Korea. Microscopic observations of this fungus are described, and illustrated. Unique characters are that it forms unitunicate muscae-like conidia with $4{\sim}6$ nuclei, and is the only Entomophthora species which can attack aphids.

  • PDF

Musaic Disease of Black Locust (Robina pseudo-acacia L.) (Part 3) Insect Vectors (아까시아나무 모자익병에 관한 연구 (제 3 ))

  • 김종진
    • Korean Journal of Microbiology
    • /
    • v.4 no.2
    • /
    • pp.19-21
    • /
    • 1966
  • For the purpose of determining possibility of aphid-transmission of mosaic disease of black locust, cowpea aphid (Aphis medicagnis Koch) and green peach aphid (Myzus persicae Sulzer) were experimented using cowpea as test plant, and both proved to be the vectors. As for transmission threshold period of cowpea aphid to the virus, the acquisition feeding period was five seconds and inoculation feeding period was two minutes. This black locust mosaic virus, therefore, is a nonpersistent virus.

  • PDF

Laboratory and Field Evaluations of Entomopathogenic Lecanicillium attenuatum CNU-23 for Control of Green Peach Aphid (Myzus persicae)

  • Kim, Hyang-Yeon;Lee, Hyang-Burm;Kim, Young-Cheol;Kim, In-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1915-1918
    • /
    • 2008
  • An entomopathogenic fungus was isolated from an infected aphid. The isolate conformed most closely to Lecanicillium attenuatum CBS 402.78 (AJ292434) based on the internal transcribed spacer (ITS) region of its 18S rDNA, and thus was designated L. attenuatum CNU-23. Laboratory and field evaluations of CNU-23 blastospores were carried out for the control of green peach aphids. The laboratory evaluations of CNU-23 revealed an aphid mortality of about 80% with an estimated $LT_{50}$ of 3.72 days after the application of CNU-23 at $1{\times}10^6$ blastospores/ml. Meanwhile, the field evaluations of CNU-23 performed on greenhouse pepper plants during the rainy season showed an aphid mortality ranging from 72% to 97%. Significant sporulation was observed in the aphids treated with CNU-23. Therefore, the results suggest that L. attenuatum CNU-23 can be used as a biocontrol agent for green peach aphids on greenhouse pepper plants.

Control of Green Peach Aphid (Myzus Persicae) by Combination of Plant Oil Formulations and Low-dosed Imidacloprid

  • Yang, You Ri;Kim, Seon-Hwa;Park, Myung-Ryeol;Kim, Ik-Soo;Kim, In-Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.239-246
    • /
    • 2010
  • Aphids are one of the major pests in agricultural crops. A number of synthetic pesticides have been used for control of aphids in agriculture, but increasing public concerns over their adverse effects on the environment have required more environmentally-friendly methods for pest management. In this study, we examined plant oil formulations for the control of green peach aphid (Myzus persicae). Oil formulations were prepared by hydrolyzing the plant oils in ethanolic KOH solution and diluted at the rate of 1:500 for aphid control. The oil formulations showed aphid mortalities ranging from 24.44 to 43.33% in vitro. Significantly increased aphid mortalities were observed by the treatment of oil formulations combined with low-dosed imidacloprid. No significant difference in the aphid mortality was observed between the oil formulations. Mass spectrometry analyses of aphids treated with the low dosedimidacloprid plus the plant oil formulations detected similar concentrations of imidacloprid between the treatments. In field trial bioassays against aphids, significantly decreased aphid population were observed in the pepper plants treated with soybean oil formulation combined with the low-dosed imidacloprid, while aphid population dramatically increased in the pepper plants treated with the low-dosed imidacloprid alone. These results suggested that the plant oil formulations can be used as an environmentally-friendly method for enhancing the insecticidal effectiveness, which may play a role in reducing the use of synthetic pesticide in agriculture.

Determination of Lethal Concentrations and Lethal Times of Extracts from Tanacetum cineariaiaefolium, Derris elliptica, and Sophora flavescens, to Control Green Peach Aphid, Myzus persicae (복숭아혹진딧물, Myzus persicae, 방제를 위한 제충국, 데리스, 고삼 추출물의 살충농도와 살충시간 결정)

  • Ka Hee Cho;Hyo Jung Kim;Song Hee Han;Young Cheol Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.267-275
    • /
    • 2023
  • Botanical extracts are employed in management of aphids. Extracts from Tanacetum cineariaiaefolium, Derris elliptica, and Sophora flavescens are widely used to control various insects. In this study, we determined concentrations of insecticidal active ingredients in commercial botanical extracts of these plants, and we investigated the time and concentration for lethal results with the green peach aphid, Myzus persicae. The concentrations of active ingredients, pyrethrins from T. cineariaiaefolium, rotenone from D. elliptica, and matrine and oxymatrine from S. flavescens, were determined after their fractionation by liquid chromatography followed by mass analysis and comparison with standard compounds. The extracts were tested for lethality in a bioassay with green peach aphids. Sprays at defined doses were applied to tobacco leaves infested with aphid nymphs. The lethal concentrations (LC50) were 20.4 ppm for pyrethrins, 34.1 ppm for rotenone, and 29.6 ppm for matrine at 48 h after treatments. At 100 ppm application levels, the lethal time LT50 was 13.4 h for pyrethrin, 15.1 h for rotenone, and 14.4 h for matrine. Kaplan-Meier analysis indicated the lethal times for the three botanical extracts at 100 ppm were significantly faster than application of a chemical insecticide, Sulfoxaflor, applied at the recommended level. These results provide baselines to develop and formulate single or mixed preparations containing botanical extracts to control green peach aphids on commercial crops.

Development and Predation of a Aphidophagous Gall Midge, Aphidoletes aphidimyza (Roundani) (Diptera: Cecidomyiidae) on Myzus persicae Sulzer (진딧물류를 포식하는 혹파리, Aphidoletes aphidimyza(Roundani)(Diptera: Cecidomyiidae)의 복숭아혹진딧물 포식과 발육)

  • Choe, Man-Yeong;Lee, Geon-Hwi;Baek, Chae-Hun
    • Korean journal of applied entomology
    • /
    • v.40 no.1
    • /
    • pp.45-45
    • /
    • 2001
  • Development and predation of an aphidophagous gall midge, Aphidoletes aphydimyza (Rondani) , on the green peach aphid, Myzus persicae Sulzer, were studied under laboratory and greenhouse conditions. The developmental threshold temperature of the gall midge larvae was estimated to be $13^{\circ}C$. Larval and total developmental periods were 5.3 and 29 days at 25 $\pm$$2^{\circ}C$. The gall midge attacked more aphids as increasing density of peach aphids, and consumed 4 out of 10 peach aphids per day in a petri dish (9 cm in diameter) at maximum. In green house, the gall midge could control the density of the green peach aphids efficiently with a delayed density dependent-like pattern.

Screening of Plant Extracts and Identification of their Insecticidal Metabolites against Myzus persicae (복숭아혹진딧물 방제용 식물추출물 탐색 및 살충성분 구명)

  • Yang, Si young;Lim, Da jung;Kim, Yeo Hee;Kim, In Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.125-134
    • /
    • 2018
  • BACKGROUND: Green peach aphid (Myzus persicae) is an insect pest that significantly affects crop production. A number of pesticides have been used for aphid control, but their concerns on insect resistance and food safety have required alternative methods for pest management. In an effort to find for an alternative approach to aphid control, we screened plants extracts and examined their potentiality as insecticidal bio-resources. METHODS AND RESULTS: Two hundred and ninety eight plant extracts were examined for insecticidal activity against the aphid, and the best candidate among them was chosen for further study. The extracts from Cinnamomum camphora was determined to be the best candidate exhibiting insecticidal activity more than 60% at a level of $1,000{\mu}g/mL$. GC/MS analyses detected camphor, borneol, 4-terpineol, ${\alpha}$-terpineol and caryophyllene oxide as major compositions from the extracts obtained by hydrodistillation. Caryophyllene oxide exhibited the highest insecticidal activity with a $LC_{50}$ value of $237{\mu}g/mL$. Camphor lowered significantly the $LC_{50}$ value of caryophyllene oxide and increased largely its concentration in aphid, suggesting that camphor played a role in enhancing the insecticidal activity of caryophyllene oxide. CONCLUSION: This study suggested that camphor and caryophyllene oxide may be used as an insecticidal bio-resource for insect control against green peach aphid.

Asian Ladybird, Harmonia axyridis, as a Biological Control Agent: Control Effects of Aphid Populations in the Greenhouses at Different Seasons (생물적 방제 인자로서의 무당벌레(Harmonia axyridis): 하우스에서 계절에 따른 진딧물 방제효과)

  • Seo, Mi-Ja;Youn, Young-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.1
    • /
    • pp.18-26
    • /
    • 2001
  • Application of the Asian ladybird (Harmonia axyridis) to control several species of aphids in the plastic green houses in mind, control effects of aphid populations regulated by the Asian ladybird were observed. The green peach aphid, the turnip aphid, and the cotton aphid were present on mustard plants, Angelia utlis, ornamental kales, and egg plants at greenhouses in spring, summer, and winter. Adults and larvae of the Asian ladybird used in experiments were collected from aggregated sites at Taejon in the autumn and reared on the cotton aphid in the laboratory. In winter, more number of adults and larvae of ladybirds than in other seasons were needed to control aphid population in successively double plastic greenhouses with supplied subterranean water for keeping warmth. In spring and summer, it was possible to keep the aphid populations low when necessary by manipulating ladybird populations according to the density of aphids. On the other hand, the innate increasing rate of aphid, the aphid population density at the time of applying ladybird, the predacious ability of ladybird at specific developmental stages, and needed periods should be taken into account to control aphids. In addition, the environmental factors, for example, optimum temperature and humidity should be considered to be biologically effective when ladybirds are released to greenhouses.

  • PDF