• Title/Summary/Keyword: Green composites

Search Result 163, Processing Time 0.028 seconds

Design and Piezoelectric properties of 2-2 piezocomposite Ultrasonic Transducers by means of the Finite Element Methode (유한요소해석법을 이용한 2-2형 압전복합재료 초음파 트랜스듀서의 설계 및 압전특성)

  • Park, Jae-Sung;Lee, Sang-Wook
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.40-46
    • /
    • 2011
  • In this study, PZT-5A green sheet were prepared by using tape casting technique, and the piezoelectric properties of PZT-5A by variation of sintering temperature was investigated. After, design and piezoelectric properties of 2-2 piezocomposite ultrasonic transducers by menas of the FEA. The acoustic impedance and piezoelectric charge constant of the 2-2 type piezocomposite transducer decreased proportionally due to the density decrease caused by the PZT volume fraction decrease. The piezocomposite acoustic impedance were 7~3 MRayl between 0.6 and 0.2 allowing it to be used for a ultrasonic transducer. The resonance characteristics and the electro-mechanical coupling factor were the best when the volume fraction PZT was 0.6. The PZT volume fraction shows the fixed value, 0.6~0.65, approximately within the range between 0.2 and 0.6 while it is increased to decreased over the range. The result of the experiment above confirmed that the 2-2 piezoelectric composites could be used as the ultrasonic transducers.

State Observer Based Modeling of Voltage Generation Characteristic of Ionic Polymer Metal Composite (상태 관측기 설계 기법을 적용한 이온성 고분자 금속 복합체의 전압 생성 특성 모델링)

  • Lee, Hyung-Ki;Park, Kiwon;Kim, Myungsoo
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.383-388
    • /
    • 2015
  • Ionic Polymer-Metal Composite (IPMC) consisting of soft membrane plated by platinum electrode layers on both surfaces generates electric energy when subjected to various mechanical stimuli. The paper proposes a circuit model that describes the physical composition of IPMC to predict the voltage generation characteristic corresponding to bending motion. The parameter values in the model are identified to minimize the RMS error between the real and simulated outputs. Following the design of IPMC circuit model, the state observer of the model is designed by using pole placement technique which improves the model accuracy. State observer design technique is also applied to find the inverse model which estimates the input bending angles from the output voltage data. The results show that the inverse model estimates input bending angles fairly well enough for the further applications of IPMC not only as an energy harvester but also as a bending sensor.

Enhanced Technique for Fiber Detection of ECC Sectional Image (ECC 화상 단면의 향상된 섬유 검출 기법)

  • Lee, Bang-Yeon;Kim, Yun-Yong;Kim, Jeong-Su;Lee, Yun;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1009-1012
    • /
    • 2008
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC(Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device(CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.

  • PDF

Effect of Calcium Sulfate Dihydrate (Gypsum) on the Fundamental Properties of Slag-based Mortar (이수석고가 고로슬래그 미분말 베이스 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Baek, Byung Hoon;Han, Cheon Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.252-258
    • /
    • 2014
  • With the vision of 'a low carbon green develop' various industrial by-products were used as replacement of cement, in order to reduce $CO_2$ emissions from the manufacturing process of cement. Blast furnace slag is one of the industrial by-products. Due to the similar chemical compositions to ordinary Portland cement, blast furnace slag have been widely used in concrete with minimum side effects. Hence, in recent years, alkali activated slag-based composites are extensively studied by many researchers. However, the alkali activator can cause a number of problems in practice. Therefore, in this study, an alternative way of activating the slag was investigated. To activate the slag without using an alkali activator, calcium sulfate dihydrate was chosen and mixed with natural recycled fine aggregate. Fundamental properties of the slag-based mortar were tested to evaluate the effect of calcium sulfate dihydrate.

Preparation of Shape Stabilized PCM Using Porous Materials for Application to Buildings (건축적용을 위한 다공성 물질을 이용한 상안정 PCM 제조)

  • Jeong, Su-Gwang;Yu, Seulgi;Jang, Seulae;Park, Jin-Sung;Kim, Taehyun;Lee, Jeong-Hun;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.432-437
    • /
    • 2013
  • The increase of greenhouse gas emission and decrease of fossil fuel are being caused by the indiscreet consumption of energy by people. Recently, green policy has been globally implemented to reduce energy consumption. This paper studied the research to reduce the energy consumption in buildings, by using the heat storage properties of PCM. PCM has to prevent leakage from the liquid state. Therefore, we prepared form stable PCM, by using the vacuum impregnation method. Three kinds of organic PCMs were impregnated into the structure of porous material. The characteristics of the composites were determined by using SEM, DSC, FTIR and TGA. SEM morphology showed the micro structure of silica fume/PCM. Also, thermal properties were examined by DSC and TGA analyses; and the chemical bonding of the composite was determined by FTIR analysis.

Combustion-Retardation Properties of Low Density Polyethylene and Ethylene Vinyl Acetate Mixtures with Magnesium Hydroxide (수산화마그네슘이 첨가된 저밀도 폴리에틸렌과 에틸렌 비닐 아세테이트 혼합물의 난연성)

  • Chung, Yeong-Jin;Lim, Hyung Mi;Jin, Eui;Oh, JungKyoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.439-443
    • /
    • 2011
  • It was performed to test the combustive properties of low density polyethylene and ethylene vinyl acetate (LDPE-EVA) mixture by the addition of magnesium hydroxide. Flame retardant of natural magnesium hydroxide was added to the mixture of LDPE-EVA in 40 to 80 wt% concentration. The composite was compounded to prepare specimen for combustive analysis by cone calorimeter (ISO 5660-1). Comparing with virgin LDPE-EVA, the specimens including the magnesium hydroxide had lower combustive properties. It is supposed that the combustion-retardation properties in the composites improved due to the endothermic decomposition of magnesium hydroxide. The specimens with magnesium hydroxide showed both the lower peak heat release rate (PHRR) and lower effective heat of combustion (EHC) than those of virgin polymer. As the magnesium hydroxide content increases, time to ignition increased and the peak heat release rate decreased.

Optimization Test of Plant-Mineral Composites to Control Nuisance Phytoplankton Aggregates in Eutrophic Reservoir (부영양 저수지의 조류제거를 위한 기능성 천연물질혼합제의 최적화 연구)

  • Lee, Ju-Hwan;Kim, Baik-Ho;Moon, Byeong-Cheon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.31-41
    • /
    • 2011
  • To optimize the natural chemical agents against nuisance phytoplankton, we examined algal removal activity (ABA) of Plant-Mineral Composite (PMC), which already developed by our teams (Kim et al., 2010), on various conditions. The PMC are consisted of extracted-mixtures with indigenous plants (Camellia sinensis, Quercusacutissima and Castanea crenata) and minerals (Loess, Quartz porphyry, and natural zeolite), and characterized by coagulation and floating of low-density suspended solids. A simple extraction process was adopted, such as drying and grinding of raw material, water-extraction by high temperature-sonication and filtering. All tests were performed in 3 L plastic chambers varying conditions; six different concentrations ($0{\sim}1.0\;mL\;L^{-1}$), six light intensities ($8{\sim}1,400\;{\mu}mol\;m^{-2}s^{-1}$), three temperatures ($10{\sim}30^{\circ}C$), four pHs (7~10), five water depths (10~50 cm), and three different waters dominated by cyanobacteria, diatom, and green algae, respectively. Results indicate that the highest ABA of PMC was seen at $0.05\;mL\;L^{-1}$ in treatment concentrations, where showed a reduction of more than 80% of control phytoplankton biomass, while $1,400\;{\mu}mol\;m^{-2}s^{-1}$ in light intensity (>90%), $20{\sim}30^{\circ}C$ temperature (>60%), 7~9 in pH (>90%), below 50 cm in water depth (>90%), and cyanobacterial dominating waters (>80%), respectively. Over the test, ABA of PMC were more obvious on the algal biomass (chlorophyll-${\alpha}$) than suspended solids, suggesting a selectivity of PMC to particle size or natures. These results suggest that PMC agents can play an important role as natural agents to remove the nuisant algal aggregates or seston of eutrophic lake, where occur cyanobacterial bloom in a shallow shore of lake during warm season.

Evaluation of Mechanical and Interfacial Properties between Glass Fiber and Epoxy Resin after NaCl Solution and Aging Treatments (염수 노화처리 일수에 따른 유리섬유 에폭시간의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Although it is important to have high strength of each of fiber and matrix, interface between fiber and matrix is most important. If NaCl water penetrates the interface, that area will be weak. So experiment about increasing interfacial strength is in process. In this study, the change of properties by mechanical, interfacial and micromechanical tests was observed after NaCl and aging treatment. The changes in mechanical properties of glass fiber were investigated using single-fiber tensile test. Interfacial properties between glass fiber and epoxy resin were evaluated using nondestructive acoustic emission (AE) and micromechanical test applied to fatigue test. Through change of fatigue properties, relative interfacial properties were evaluate. In conclusion, glass fiber diameter decreased and the reduction of mechanical and interfacial was observed with NaCl solution and aging treatment.

Fiber Classification and Detection Technique Proposed for Applying on the PVA-ECC Sectional Image (PVA-ECC단면 이미지의 섬유 분류 및 검출 기법)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.513-522
    • /
    • 2008
  • The fiber dispersion performance in fiber-reinforced cementitious composites is a crucial factor with respect to achieving desired mechanical performance. However, evaluation of the fiber dispersion performance in the composite PVA-ECC (Polyvinyl alcohol-Engineered Cementitious Composite) is extremely challenging because of the low contrast of PVA fibers with the cement-based matrix. In the present work, an enhanced fiber detection technique is developed and demonstrated. Using a fluorescence technique on the PVA-ECC, PVA fibers are observed as green dots in the cross-section of the composite. After capturing the fluorescence image with a Charged Couple Device (CCD) camera through a microscope. The fibers are more accurately detected by employing a series of process based on a categorization, watershed segmentation, and morphological reconstruction.

Electrical Properties of BaTiO3-based 0603/0.1µF/0.3mm Ceramics Decoupling Capacitor for Embedding in the PCB of 10G RF Transceiver Module

  • Park, Hwa-sun;Na, Youngil;Choi, Ho Joon;Suh, Su-jeong;Baek, Dong-Hyun;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1638-1643
    • /
    • 2018
  • Multi-layer ceramic capacitors as decoupling capacitor were fabricated by dielectric composition with a high dielectric constant. The fabricated decoupling capacitors were embedded in the PCB of the 10G RF transceiver module and evaluated for the characteristics of electrical noise by the level of AC input voltage. In order to further improve the electrical properties of the $BaTiO_3$ based composite, glass frit, MgO, $Y_2O_3$, $Mn_3O$, $V_2O_5$, $BaCO_3$, $SiO_2$, and $Al_2O_3$ were used as additives. The electrical properties of the composites were determined by various amounts of additives and optimum sintering temperature. As a result of the optimized composite, it was possible to obtain a density of $5.77g/cm^3$, a dielectric constant of 1994, and an insulation resistance of $2.91{\times}10^{12}{\Omega}$ at an additive content of 5wt% and a sintering temperature of $1250^{\circ}C$. After forming a $2.5{\mu}m$ green sheet using the doctor blade method, a total of 77 layers were laminated and sintered at $1180^{\circ}C$. A decoupling capacitor with a size of $0.6mm(W){\times}0.3mm(L){\times}0.3mm(T)$ (width, length and thickness, respectively) and a capacitance of 100 nF was embedded using a PCB process for the 10G RF Transceiver modules. In the range of AC input voltage 400mmV @ 500kHz to 2200mV @ 900kHz, the embedded 10G RF Transceiver modules evaluated that it has better electrical performance than the non-embedded modules.