• 제목/요약/키워드: Green composites

검색결과 163건 처리시간 0.028초

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • 제56권4호
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.

실리카 파우더를 이용한 에폭시 복합소재의 열적/기계적 특성 (Thermal and Mechanical Properties of Epoxy Composites Using Silica Powder)

  • 이혜련;송지혜;김대연;임충선;서봉국
    • 접착 및 계면
    • /
    • 제17권1호
    • /
    • pp.7-14
    • /
    • 2016
  • 에폭시 수지는 취성(brittleness)으로 인한 기계적 강도의 저하가 발생하고 금속 등과 같이 열팽창 계수가 다른 재료와 결합하여 함께 사용하는 경우에 열변형 차이 때문에 부품의 박리나 부분 손상 등이 일어나는 단점이 있다. 본 연구에서는 복합재료의 기계적 강도 및 열안정성을 높이기 위하여 아민기를 가진 실란 커플링제를 이용하여 표면 처리한 실리카 입자를 에폭시 수지에 첨가하여 강화된 복합재료 시편을 제조한 에폭시 복합재료 시편을 대상으로 분산의 적절성을 확인하고 기계적 특성과 열적 물성을 평가하고자 하였다. 함량 변화에 따른 기계적 특성 변화를 UTM으로 인장강도를 측정한 결과 30-50 MPa의 인장강도 값을 보였다. 실리카 입자가 에폭시 수지 내에 함량에 따라 분산된 정도를 비교하기 위해 SEM 및 EDS 분석을 수행하였다. TMA 분석을 통하여 열팽창계수 및 유리전이온도를 확인하였으며 열충격 실험을 통하여 에폭시 복합소재의 내열안정성을 평가하였다.

Experimental evaluation on comparative mechanical properties of Jute - Flax fibre Reinforced composite structures

  • Kumar, B. Ravi;Srimannarayana, C.H. Naga;Krishnan, K. Aniruth;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.515-520
    • /
    • 2020
  • In the modern era, the world is facing unprecedented challenges in form of environmental pollution and international agencies are forcing scientists and materialists to look for green materials and structures to counter this problem. Composites based on renewable sources like plant based fibres, vegetable fibres are finding increasing use in interior components of automobile vehicles, aircraft, and building construction. In the present study, jute and flax fibre based composites were developed and tested for assessing their suitability for possible applications in interior cabin and parts of automobile and aerospace vehicles. Matrix system involves epoxy as resin and fibre weight fractions used were 45% and 55% respectively. Composites samples were prepared as per American society for testing and materials (ASTM) standard and were tested for individual fiber tensile strength, composite tensile strength, and flexural strength to analyse its behavior under various loading conditions. The results revealed that the Jute fibre composites possess enhanced mechanical properties over Flax fibre composites.

Preparation of Nanosized Palladium-Graphene Composites and Photocatalytic Degradation of Various Organic Dyes

  • Kim, Jae Jin;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제51권1호
    • /
    • pp.10-16
    • /
    • 2016
  • Nanosized palladium particles were synthesized using palladium(II) chloride, trisodium citrate dihydrate, and sodium borohydride under stirring condition. Nanosized palladium-graphene composites were prepared from palladium nanoparticles, and graphene was enclosed with polyallylamine under stirring condition for 1 h followed by ultrasonication for 3 h. Nanosized palladium-graphene composites were heated in an electric furnace at $700^{\circ}C$ for 2 h and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. UV-vis spectrophotometry was used to evaluate the nanosized palladium-graphene composites as a catalyst in the photocatalytic degradation of various organic dyes such as methylene blue, methyl orange, rhodamine B, and brilliant green under ultraviolet light at 254 nm.

Solid State Sintering of Calcium Phosphate Ceramic Composites and Their Cellular Response

  • Cho, Yeong-Cheol;Kong, Young-Min;Riu, Doh-Hyung
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.691-695
    • /
    • 2012
  • Calcium phosphate ceramic composites, consisting of hydroxyapatite(HA) and tricalcium phosphate (TCP), were fabricated by solid state sintering in order to investigate the effect of their initial compositions on microstructural evolutions and biocompatibility. All the sintered calcium phosphate ceramics exhibited almost full densification, while the grain growth of the composites increased with an increasing TCP content in the green body. The TCP phase transformed into a Ca-deficient HA phase during sintering via the diffusion of calcium ions from the HA phase into the TCP phase. The phases formed in the composites significantly affected the biocompatibility of the composites. The HA-matrix ceramic composites with TCP had a better cellular response than the pure HA ceramics, presumably due to the newly formed Ca-deficient HA.

사이징제에 따른 유리섬유/폴리디사이클로펜타디엔 복합재료의 계면물성 및 기계적 물성 평가 (Evaluation of Interfacial and Mechanical Properties of GF/p-DCPD Composites with Different Sizing Agents)

  • 김종현;권동준;신평수;박하승;백영민;박종만
    • Composites Research
    • /
    • 제31권2호
    • /
    • pp.57-62
    • /
    • 2018
  • 순수한 유리섬유와 두 가지 사이징제가 코팅된 유리섬유/폴리디사이클로펜타디엔(p-DCPD) 복합재료의 계면물성 및 상온($25^{\circ}C$)과 저온($-20^{\circ}C$)에서의 기계적 물성을 평가하였다. 섬유의 사이징제를 용출하기 위하여 아세톤을 이용하였고, 용액을 건조 후 각각의 용출물에 대하여 적외선 분광 분석을 통해 비교하였다. 동적접촉각 측정을 통하여 섬유와 p-DCPD의 표면에너지를 분석하였고 이를 통하여 접착일을 계산하였다. 서로 다른 유리섬유의 기계적 물성을 알아보기 위하여 단섬유 인장실험을 진행하였고, 단섬유와 p-DCPD의 계면적 물성을 알아보기 위하여 반복인장하중실험을 진행하였다. 상온 및 저온에서의 기계적 물성을 알아보기 위하여 인장, 굴곡, 아이조드 충격실험을 진행하였다. 실험결과 표면의 인자에 따라 계면 및 기계적 물성이 달라지는 것을 볼 수 있었다.

혼합분말의 과립특성이 가압소결 탄화규소 휘스커/알루미나 복합재료의 기계적 물성에 미치는 영향 (Effect of Granule Characteristics of Mixed Powder on Mechanical Properties of Hot-Pressed SiC-Whisker/Alumina Composites)

  • 이해원;송휴섭
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1513-1520
    • /
    • 1994
  • Mechanical properties of hot-pressed SiC whisker/Al2O3 composites were strongly dependent on the granular characteristics of mixed powder, which were controlled by co-dispersion condition, the existence of steric barrier on whisker surface, and granulating method, etc. Heat-treatment of SiC whiskers at $700^{\circ}C$ for 1 hr in air was very effective both for achieving dispersion stability of whiskers with PVA adsorption and for obtaining excellent mechanical properties of resulting composites. It is believed from the fractography of composites prepared with various whisker dispersion conditions that the most common fracture origin of Al2O3 agglomerate could be attributed to whisker clusters arising due to flocculation. Further improvement of mechanical properties of composites were achieved by hot pressing green tapes prepared by Doctor-blade process, which promoted two-dimensional random alignment of whiskers.

  • PDF

반응소결 SiC-graphite 복합체의 마찰마모특성 (Tribological Properties of Raction-Bonded SiC-Graphite Composites)

  • 백용혁;신종윤;곽효섭;박용갑
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.479-484
    • /
    • 1996
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as mechanical seal slurry valve disc and so on. In this study the effect of graphite addition on the mechanical and tribological properties of RBSC/graphite composites were investigated. The composites were prepared by adding graphite powder to the mixture of SiC powder metallic siliconcarbon black and alumina. Bending strength water absorption friction coefficient the amount of worn out material at a certain time and maximum surface roughness(Rmax) of the prepared composites were measured and crystalline phases were examined with XRD. The composite containing 5 vol% graphite powder showed improved bending strength due to high green density and decreased friction coefficient and wear resistance. The friction coefficient and the wear resistance of the composite were increased by adding graphite powder up to 10 vol% They decreased however as increasing the amount of graphite powder more that 10vol% There was no linear relationship between the tribological properties and bending strength of the composites.

  • PDF

광원 경화형 소재의 수축률평가를 통한 광경화 거동 평가 (Curing behavior of Photo-Curable Materials by Photo-Shrinkage Test)

  • 박지원;배경열;김판석;임동혁;김현중;조진구;김백진;이상협
    • 접착 및 계면
    • /
    • 제11권2호
    • /
    • pp.57-62
    • /
    • 2010
  • 광원경화형 소재는 UV, 가시광선 등에 의해 반응하여 분자간의 가교가 일어나고 이러한 가교반응에 의해 물성이 제어되는 소재를 의미한다. 광원경화거동과정에서 수축현상이 발생하게 되는데 이때 발생하는 수축현상으로 인해 재료의 구조가 변하고 내부의 응력이 발생하는 현상 등의 문제가 발생한다. 열경화에 의한 수축현상을 분석하는 연구는 많이 진행되어 왔으나 광원경화에 대한 수축현상을 연구하는 분야는 현재 경화 수준이나 경화속도 등을 분석하는데 그치고 있다. 본 연구에서는 수축률 측정기를 통해 광원경화에 대한 수축현상을 실시간으로 살펴보고 재료의 차이에 따른 경화거동과 수축현상의 차이를 살펴보고자 한다. 관능기의 숫자가 변화함에 따라 수축률과 수축 속도의 변화가 생겼으며 분자량의 사슬길이에 따라 수축정도의 차이가 발생했다. 이러한 결과가 이론적인 결과 값인 양의 상관관계와는 반대로 음의 상관관계를 가짐을 분석하였다. 이는 수축률이 단순히 분자량과 관능기 숫자에 따라 결정되는 것이 아니라 분자구조에 따른 혼합물 내에서의 유동성 등에도 영향을 받음을 확인 할 수 있는 결과이다.

Processing and mechanical property evaluation of maize fiber reinforced green composites

  • Dauda, Mohammed;Yoshiba, Masayuki;Miura, Kazuhiro;Takahashi, Satoru
    • Advanced Composite Materials
    • /
    • 제16권4호
    • /
    • pp.335-347
    • /
    • 2007
  • Green composites composed of long maize fibers and poly $\varepsilon$-caprolactone (PCL) biodegradable polyester matrix were manufactured by the thermo-mechanical processing termed as 'Sequential Molding and Forming Process' that was developed previously by the authors' research group. A variety of processing parameters such as fiber area fraction, molding temperature and forming pressure were systematically controlled and their influence on the tensile properties was investigated. It was revealed that both tensile strength and elastic modulus of the composites increase steadily depending on the increase in fiber area fraction, suggesting a general conformity to the rule of mixtures (ROM), particularly up to 55% fiber area fraction. The improvement in tensile properties was found to be closely related to the good interfacial adhesion between the fiber and polymer matrix, and was observed to be more pronounced under the optimum processing condition of $130^{\circ}C$ molding temperature and 10 MPa forming pressure. However, processing out of the optimum condition results in a deterioration in properties, mostly fiber and/or matrix degradation together with their interfacial defect as a consequence of the thermal or mechanical damages. On the basis of microstructural observation, the cause of strength degradation and its countermeasure to provide a feasible composite design are discussed in relation to the optimized process conditions.