• Title/Summary/Keyword: Green Soil

Search Result 1,158, Processing Time 0.031 seconds

Analysis of Roadside Soil Characteristics and Tire Wear Particles(TWPs) According to Traffic Volume (교통량별 가로변 토양특성 및 타이어 마모 입자(TWPs) 분석)

  • Sun Yeong Lee;Jin Hee Ju;Yong Han Yoon
    • Journal of Environmental Science International
    • /
    • v.32 no.9
    • /
    • pp.627-634
    • /
    • 2023
  • Tire wear particles(TWPs), regarded as a microplastic, is generated in significant quantities each year and exist in various spaces and have a negative impact on the surrounding environment. Particularly, roadside environments fall within the direct influence of TWPs, necessitating proactive investigation for contamination management and response. Therefore, this study aimed to investigate the soil acidity and electrical conductivity(EC) and TWPs in the roadside soil of six sites based on traffic volume. The analysis revealed that the soil in all sites exhibited subacidity, and there were no significant differences in EC. Microscopic and FT-IR analysis revealed the presence of microscopic particles in soil samples that exhibited common visual characteristics of TWPs. In the road with the highest traffic volume, 48,300 TWPs were detected per unit area. Furthermore, a proportional relationship between traffic volume and TWPs particles was established. However, influences other than traffic volume on TWPs particle count within the soil were observed. Therefore, for the management of TWPs contaminated roadside soil, a proactive response is necessary in areas with high traffic volumes. However, in order to effectively address the factors contributing to the generation and dispersion of TWPs, further research is required with a multidimensional approach.

Effects of Green Manure Crops on Improvement of Chemical and Biological Properties in Soil (토양 화학성 및 생물학성 변화에 대한 녹비작물 시용 효과)

  • Choi, Bong-Su;Jung, Jung-Ah;Oh, Mi-Kyung;Jeon, Sang-Ho;Goh, Hyun-Gwan;Ok, Yong-Sik;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.650-658
    • /
    • 2010
  • We used green manure crops such as hairy vetch, crimson clover, rye, sorghum, and sudan grass by mixing with soils to assess the effects of green manure crops on nutrient supply and soil quality improvement. Temporal changes in soil inorganic nitrogen, carbohydrate, microbial biomass, and humus content were determined as soil quality indicators. Inorganic nitrogen content of the control maintained similar level during the whole period, but it had continually increased until 4 weeks after incorporation (WAI) of green manure crops. Especially, inorganic nitrogen content sharply increased in sudan grass. After incorporation of green manure crops, temporal change of soluble sugar in soils was as follows: it had gradually increased in legume green manure crops-incorporated soils until 7 WAI, which was the highest, and then showed the tendency to be reduced. Meanwhile, it in non-legume green manure crops-incorporated soils rapidly increased after the incorporation, and reached the maximum around 4 WAI. Humic acid by the decomposition of crop residues in green manure crops-incorporated soils was greatly enhanced with the elapsed time of 4 WAI, although it was low at the same level as the control until 2 weeks. In addition, there was a difference in fulvic acid by incorporated crops, fulvic acid in hairy vetch, sorghum and sudan grass showed a similar tendency with the change in humic acid. Our results suggest that soluble sugar, microbial activity and humic acid could be available indicators to evaluate the fertility of green manure crops-incorporated soils.

A Study of Stability Analysis on Unsaturated Weathered Slopes Based on Rainfall-induced Wetting (강우시 습윤에 의한 불포화 풍화토의 사면 안정 해석 연구)

  • 김재홍;박성완;정상섭;유지형
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.123-136
    • /
    • 2002
  • The infiltration of prolonged rainfall causes shallow slope failures on surficial slopes. Experiments performed on soil-water characteristic curves in weathered soils of three different types(SW, SP, SM) were used to construct a general equation for the soil-water characteristic curve. Based on this, the saturated depth by Green & Ampt model was compared with the results of numerical analyses and the range of application of Green & Ampt model was evaluated. It was found that the saturated depth occurred by infiltration on the surface of slopes has an inf1uence on the surficial stability of slopes md, the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of weathered soils was found to be a proper analysis for shallow slope failures due to rainfall.

Change in Growth of Chrysanthemum zawadskii var. coreanum as Effected by Different Green Roof System under Rainfed Conditions (빗물활용 옥상녹화 식재지반에 따른 한라구절초의 생육 변화)

  • Ju, Jin-Hee;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2011
  • This study aims to suggest a suitable soil thickness and soil mixture ratio of a green roof system by verifying the growth of Chrysanthemum zawadskii var. coreanum as affected by different green roof systems using rainwater. The experimental planting grounds were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios (SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) and with excellent drought tolerance. Ornamental value Chrysanthemum zawadskii var. coreanum was planted. The change in plant height, green coverage ratio, chlorophyll content, fresh weight, dry weight, and dry T/R ratio of Chrysanthemum zawadskii var. coreanum were investigated from April to October 2009. For 15cm soil thickness, the plant height of Chrysanthemum zawadskii var. coreanum was not significantly different as affected by the soil mixing ratio. However, it was found to be higher in the amended soil mixture, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$ than in the sandy loam soil, as it was SL overall. For 25cm soil the plant height differences were in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was observed not to be different by soil mixing ratio with soil thickness of 15cm, but, the lowest green coverage ratio in the SL. In the 25cm soil thickness, the green coverage ratio was 86-89% with a good coverage rate overall. The change in chlorophyll contents with 15cm soil thickness was found to be the highest in the SL treatment and the lowest in the $P_5P_3L_2$ treatment. For 25cm thickness, the highest value was in the $P_4P_4L_2$ and SL, and the lowest in the$P_7P_1L_2$. Fresh weight and dry weight were larger in soil with 25cm thickness. Therefore, the growth of Chrysanthemum zawadskii var. coreanum as affected by a different green roof system for using rainwater was higher in soil with 25cm thickness than 15cm, and in PPL amended soil than in sandy loam.

Stability Evaluation of Green Wall System due to Facing Rigidity (전면벽체 강성에 따른 그린월 시스템의 안정성 평가)

  • Park, Si-Sam;Kim, Hong-Taek;Kim, Seung-Wook;Kim, Yong-Eon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.9-15
    • /
    • 2006
  • The Green Wall system is one of segmental concrete crib type earth retaining wall. Green wall is constructed as procedures that lay the front stretchers, rear stretchers and headers then making a rigid body through harden filled soil of interior cell. Recently, Green Wall method is applied in variable cutting ground construction because of advantage which minimize to cut base ground. In case of Green Wall method is constructed with soil nail method, expect that total system stability will increase more than flexible facing because of facing stiffness is big. However, in this case of design, facing stiffness is not considered so that is poor economy. Hence, in this study, stability increasing effect of total system analyze about that soil nail method is constructed with rigidity facing like a Green Wall method. In present study, laboratory model tests was performed for analysis on stability increasing effect of total system about changing stiffness of facing. LEM analysis conducted for evaluation on safety factor of total system sliding that facing condition changed.

  • PDF

Utility of Hydrophilic Polymer for Green Technology Development in Green Roofs Using Rainwater (빗물활용 옥상녹화 녹색기술 개발을 위한 친수성 중합체의 효용성)

  • Ju, Jin-Hee;Yang, Ji;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1469-1476
    • /
    • 2012
  • Hydrophilic polymer is suitable as soil conditioners for green roofs that use rainwater, due to promotion of water retention capacity as well as enhancement of the water absorbing capacity. The objective of the present study was to investigate the effects of different levels of hydrophilic polymer concentrations (0, 0.1, 0.2, 0.4, 0.8% w/w) on the water holding capacity and growth response of 6 species in soils amended with hydrophilic polymer in 5 cm of soil thickness on green roofs. The results showed that the water holding capacity of the amended soil improved with increasing amount of applied polymer. The application of 0.8% w/w of the polymer increased the soil moisture by 87% compared to the control, and decreased slowly in green roofs during an arid period. The growth of Sedum spurium 'Dragon's blood' and Lampranthus spectabilis increased significantly and had greater than 60% relative coverage with higher hydrophilic polymer concentrations. However, Juniperus chinensis var. sargentii and Euonymus fortunei var. radicans had no significant differences upon change of hydrophilic polymer concentrations. In Carex kujuzana and Carex morrowii 'Aurea variegata', growth decreased with increase of hydrophilic polymer concentrations. 30 days after planting, Juniperus chinensis var. sargentii, Euonymus fortunei var. radicans, Carex kujuzana, and Carex morrowii 'Aurea variegata' died back due to lowest soil thickness (5 cm), but Sedum spurium 'Dragon's blood' and Lampranthus spectabilis had greater than 90% survival.

Effect of Cover Crop Species and Liquid Manure Application Rate on Green Manure Production, Leaf Mineral Content, Fruit Quality and Soil Chemical Properties in Pear Orchard

  • Lee, Seong Eun;Park, Jin Myeon;Park, Young Eun;Choi, Dong Geun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.558-562
    • /
    • 2014
  • Cover cropping and liquid manure application are considered as effective ways to replace the use of chemical fertilizer in orchard. This study was conducted to investigate the effect of cover crop species and liquid manure application rate on green manure production, leaf mineral content, fruit quality and soil chemical properties in pear orchard. The treatments include rye and hairy vetch as cover crops, two liquid manure application levels based on N and $K_2O$ requirement on each cover crop species, and chemical fertilizer as control. Green manure production was higher in hairy vetch than in rye. K content of pear leaves and soil exchangeable K content increased in N based liquid manure application treatments. The yield was higher in rye + liquid manure and fertilizer treatments, and fruit quality was not different between the treatments. Taking all of these into account, rye + $K_2O$ requirement-based liquid manure application is recommended in pear orchard for not only sufficient nutrient supply but also prevention of any problem related with soil $K_2O$ accumulation in pear orchard in long-term perspective.

A Study on the Live Load According to Composition of the Planting Base of Green Roof (건축물 옥상녹화에 따른 식재기반구성의 적재하중에 관한 연구)

  • 김성수;서경호;김효열;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.85-90
    • /
    • 2004
  • We divided the planting bale into waterproof layer, drainage layer and soil layer so at to investigate changes of live load according to species of wood and composition of the base to make rooftops green. The results are follows, 1. As concerning construction and live load for green roof, sheet waterproofing is superior. 2. When materials of drainage are changed crushed gravel into artificial lightweight graval or ferrite, live load of planting bale is decreased about 22% and 25% in order. 3. When ingredients of soil are chased normal sand into volcanic sand, live load of base is decreased about 28%. Especially, when it is changed into ferrite, 54% of live load is decreased. 4. In this study, all live load we concerned excesses the standard about roof live load of office, school and house. Hence, structure has to be concerned thoroughly when making rooftops green. But, we judge that various methods for making rooftops green can be applied if we consider roof garden when we plan new buildings.

  • PDF

Natural Ripening versus Artificial Enhancing of Silty Reclaimed Tidal Soils for Upland Cropping Tested by Profile Characterization

  • Ibrahim, Muhammad;Han, Kyung-Hwa;Lee, Kyung-Do;Youn, Kwan-Hee;Ha, Sang-Keun;Zhang, Yong-Seon;Hur, Seung-Oh;Yoon, Sung-Won;Cho, Hee-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This study was performed to produce basic data for silty reclaimed tidal lands and to develop techniques of environmentally-friendly utilization in agricultural system. We chose the two sites in Saemangeum reclaimed tidal lands, one (Site I) has been treated with cultivating green manure and conducting the desalinization process through submergence since April, 2007 and the other (Site II) has been under natural condition without artificial treatment. In situ and ex situ physic-chemical properties were determined and comparisons were made for soil profiles examined at these two sites in April 2009. Surface soil of Site I had lower EC and higher field saturated hydraulic conductivity than those of Site II, uncultivated land. Especially, exchangeable sodium content was lowest in Site I Ap1 layer than in other layers. This is probably due to flooding desalination and green manure cultivation. Besides, Ap1 and A2 layers of soil profile in Site I showed brighter soil color and more root observation than those of Site II. This is probably due to green manure cultivation. By the large, for high cash upland crops and intensive agricultural use of silty reclaimed tidal land, site-specific soil ripening such as flooding desalination and green manure cultivation could be useful.

Effects of Long-Term Fertilization on Microbial Diversity in Upland Soils Estimated by Biolog Ecoplate and DGGE

  • An, Nan-Hee;Lee, Sang-Min;Cho, Jung-Rai;Lee, Byung-Mo;Shin, Jae-Hun;Ok, Jung-Hun;Kim, Seok-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.451-456
    • /
    • 2014
  • Organic amendment practices can influence diversity and activities of soil microorganisms. There is a need to investigate this impact compared with other types of materials. This study was carried out to evaluate the long term effects of chemical and organic fertilizer on soil microbial community in upland field. During the last 11 years green manure, rice straw compost, rapeseed cake, pig mature compost, NPK, and NPK + pig mature compost were treated in upland soil. Organic fertilizer treatment found with high bacterial colony forming units (CFUs) as compared to chemical and without fertilizer treatment. There was no significant difference in the actinomycetes and fungal population. The average well color development (AWCD) value was the highest in green manure and, the lowest in without fertilizer treatment. Analyses based on the denaturing gradient gel electrophoresis (DGGE) profile showed that rice straw compost and pig mature compost had a similar banding pattern while rapeseed cake, NPK, NPK + pig mature compost and without fertilizer treatment were clustered in another cluster and clearly distinguished from green manure treatment. Bacterial diversity can be highly increased by the application of organic fertilizer while chemical fertilizer had less impact. It can be concluded that green manure had a beneficial impact on soil microbial flora, while, the use of chemical fertilizer could affect the soil bacterial communities adversely.